Hugelier Siewert, de Rooi Johan J, Bernex Romain, Duwé Sam, Devos Olivier, Sliwa Michel, Dedecker Peter, Eilers Paul H C, Ruckebusch Cyril
Université de Lille, LASIR CNRS UMR 8516, F-59000 Lille, France.
Erasmus MC, Department of Biostatistics, Rotterdam, the Netherlands.
Sci Rep. 2016 Feb 25;6:21413. doi: 10.1038/srep21413.
In wide-field super-resolution microscopy, investigating the nanoscale structure of cellular processes, and resolving fast dynamics and morphological changes in cells requires algorithms capable of working with a high-density of emissive fluorophores. Current deconvolution algorithms estimate fluorophore density by using representations of the signal that promote sparsity of the super-resolution images via an L1-norm penalty. This penalty imposes a restriction on the sum of absolute values of the estimates of emitter brightness. By implementing an L0-norm penalty--on the number of fluorophores rather than on their overall brightness--we present a penalized regression approach that can work at high-density and allows fast super-resolution imaging. We validated our approach on simulated images with densities up to 15 emitters per μm(-2) and investigated total internal reflection fluorescence (TIRF) data of mitochondria in a HEK293-T cell labeled with DAKAP-Dronpa. We demonstrated super-resolution imaging of the dynamics with a resolution down to 55 nm and a 0.5 s time sampling.
在宽场超分辨率显微镜中,研究细胞过程的纳米级结构以及解析细胞中的快速动力学和形态变化,需要能够处理高密度发射荧光团的算法。当前的反卷积算法通过使用通过L1范数惩罚促进超分辨率图像稀疏性的信号表示来估计荧光团密度。这种惩罚对发射体亮度估计的绝对值之和施加了限制。通过对荧光团数量而非其整体亮度实施L0范数惩罚,我们提出了一种惩罚回归方法,该方法可以在高密度下工作并实现快速超分辨率成像。我们在密度高达每μm(-2) 15个发射体的模拟图像上验证了我们的方法,并研究了用DAKAP-Dronpa标记的HEK293-T细胞中线粒体的全内反射荧光(TIRF)数据。我们展示了分辨率低至55 nm且时间采样为0.5 s的动力学超分辨率成像。