Suppr超能文献

二维过渡金属二硫属化物单层化学气相沉积的广义机理模型。

Generalized Mechanistic Model for the Chemical Vapor Deposition of 2D Transition Metal Dichalcogenide Monolayers.

机构信息

Department of Chemical Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States.

Department of Materials, University of Oxford , Parks Road, Oxford OX1 3PH, United Kingdom.

出版信息

ACS Nano. 2016 Apr 26;10(4):4330-44. doi: 10.1021/acsnano.5b07916. Epub 2016 Mar 18.

Abstract

Transition metal dichalcogenides (TMDs) like molybdenum disulfide (MoS2) and tungsten disulfide (WS2) are layered materials capable of growth to one monolayer thickness via chemical vapor deposition (CVD). Such CVD methods, while powerful, are notoriously difficult to extend across different reactor types and conditions, with subtle variations often confounding reproducibility, particularly for 2D TMD growth. In this work, we formulate the first generalized TMD synthetic theory by constructing a thermodynamic and kinetic growth mechanism linked to CVD reactor parameters that is predictive of specific geometric shape, size, and aspect ratio from triangular to hexagonal growth, depending on specific CVD reactor conditions. We validate our model using experimental data from Wang et al. (Chem. Mater. 2014, 26, 6371-6379) that demonstrate the systemic evolution of MoS2 morphology down the length of a flow CVD reactor where variations in gas phase concentrations can be accurately estimated using a transport model (CSulfur = 9-965 μmol/m(3); CMoO3 = 15-16 mmol/m(3)) under otherwise isothermal conditions (700 °C). A stochastic model which utilizes a site-dependent activation energy barrier based on the intrinsic TMD bond energies and a series of Evans-Polanyi relations leads to remarkable, quantitative agreement with both shape and size evolution along the reactor. The model is shown to extend to the growth of WS2 at 800 °C and MoS2 under varied process conditions. Finally, a simplified theory is developed to translate the model into a "kinetic phase diagram" of the growth process. The predictive capability of this model and its extension to other TMD systems promise to significantly increase the controlled synthesis of such materials.

摘要

过渡金属二硫属化物(TMDs),如二硫化钼(MoS2)和二硫化钨(WS2),是能够通过化学气相沉积(CVD)生长至单层厚度的层状材料。尽管这种 CVD 方法非常强大,但它很难扩展到不同的反应堆类型和条件下,细微的变化常常会影响可重复性,特别是对于 2D TMD 的生长。在这项工作中,我们通过构建与 CVD 反应堆参数相关的热力学和动力学生长机制,提出了第一个通用的 TMD 合成理论,该理论可以预测特定几何形状、尺寸和纵横比,从三角形到六边形生长,具体取决于特定的 CVD 反应堆条件。我们使用 Wang 等人的实验数据(Chem. Mater. 2014, 26, 6371-6379)验证了我们的模型,该模型展示了 MoS2 形态沿着 CVD 流动反应堆长度的系统演变,其中可以使用传输模型(CSulfur = 9-965 μmol/m3;CMoO3 = 15-16 mmol/m3)准确估计气相浓度的变化,在其他等温条件(700°C)下。一个利用基于内在 TMD 键能的位置相关的激活能垒和一系列 Evans-Polanyi 关系的随机模型,导致与反应器中形状和尺寸的演化非常吻合。该模型被证明可以扩展到 800°C 下 WS2 的生长和不同工艺条件下 MoS2 的生长。最后,开发了一个简化的理论,将模型转化为生长过程的“动力学相图”。该模型的预测能力及其对其他 TMD 系统的扩展有望显著提高这些材料的可控合成。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验