Suppr超能文献

用于生产高纯度(77)砷的锗和砷的色谱分离。

Chromatographic separation of germanium and arsenic for the production of high purity (77)As.

作者信息

Gott Matthew D, DeGraffenreid Anthony J, Feng Yutian, Phipps Michael D, Wycoff Donald E, Embree Mary F, Cutler Cathy S, Ketring Alan R, Jurisson Silvia S

机构信息

Department of Chemistry, University of Missouri, Columbia, MO 65211, United States.

University of Missouri Research Reactor Center, Columbia, MO 65211, United States.

出版信息

J Chromatogr A. 2016 Apr 8;1441:68-74. doi: 10.1016/j.chroma.2016.02.074. Epub 2016 Mar 2.

Abstract

A simple column chromatographic method was developed to isolate (77)As (94±6% (EtOH/HCl); 74±11 (MeOH)) from germanium for potential use in radioimmunotherapy. The separation of arsenic from germanium was based on their relative affinities for different chromatographic materials in aqueous and organic environments. Using an organic or mixed mobile phase, germanium was selectively retained on a silica gel column as germanate, while arsenic was eluted from the column as arsenate. Subsequently, enriched (76)Ge (98±2) was recovered for reuse by elution with aqueous solution (neutral to basic). Greater than 98% radiolabeling yield of a (77)As-trithiol was observed from methanol separated [(77)As]arsenate [17].

摘要

开发了一种简单的柱色谱方法,用于从锗中分离出(77)As(乙醇/盐酸中为94±6%;甲醇中为74±11),以用于放射免疫治疗。砷与锗的分离基于它们在水性和有机环境中对不同色谱材料的相对亲和力。使用有机或混合流动相时,锗以锗酸盐的形式选择性地保留在硅胶柱上,而砷以砷酸盐的形式从柱上洗脱下来。随后,通过用中性至碱性的水溶液洗脱回收富集的(76)Ge(98±2)以供再利用。从甲醇分离得到的[(77)As]砷酸盐中观察到(77)As-三硫醇的放射性标记产率大于98%[17]。

相似文献

7
Concentration of 68Ga via solvent extraction.
Appl Radiat Isot. 2009 Jan;67(1):100-2. doi: 10.1016/j.apradiso.2008.08.004. Epub 2008 Aug 12.
8
Chromatographic separation of arsenic species with pentafluorophenyl column and application to rice.
J Chromatogr A. 2014 Aug 8;1354:109-16. doi: 10.1016/j.chroma.2014.05.072. Epub 2014 Jun 4.

引用本文的文献

1
PET radiometals for antibody labeling.用于抗体标记的正电子发射断层显像放射性金属
J Labelled Comp Radiopharm. 2018 Jul;61(9):636-651. doi: 10.1002/jlcr.3607. Epub 2018 Mar 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验