Suppr超能文献

神经毡内的可塑性胶质-突触动力学:一个由处于相变状态的聚电解质组成的自组织系统。

The Plastic Glial-Synaptic Dynamics within the Neuropil: A Self-Organizing System Composed of Polyelectrolytes in Phase Transition.

作者信息

Fernandes de Lima Vera Maura, Pereira Alfredo

机构信息

Centro de Biotecnologia, IPEN-CNEN/SP, Avenida Prof. Lineu Prestes 2242, Butantã, 05508-000 São Paulo, SP, Brazil.

Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Campus Rubião Jr., 18618-970 Botucatu, SP, Brazil.

出版信息

Neural Plast. 2016;2016:7192427. doi: 10.1155/2016/7192427. Epub 2016 Feb 1.

Abstract

Several explanations have been proposed to account for the mechanisms of neuroglial interactions involved in neural plasticity. We review experimental results addressing plastic nonlinear interactions between glial membranes and synaptic terminals. These results indicate the necessity of elaborating on a model based on the dynamics of hydroionic waves within the neuropil. These waves have been detected in a small scale experimental model of the central nervous system, the in vitro retina. We suggest that the brain, as the heart and kidney, is a system for which the state of water is functional. The use of nonlinear thermodynamics supports experiments at convenient biological spatiotemporal scales, while an understanding of the properties of ions and their interactions with water requires explanations based on quantum theories. In our approach, neural plasticity is seen as part of a larger process that encompasses higher brain functions; in this regard, hydroionic waves within the neuropil are considered to carry both physiological and cognitive functions.

摘要

为了解释神经可塑性中涉及的神经胶质相互作用机制,人们提出了几种解释。我们回顾了有关神经胶质膜与突触终末之间可塑性非线性相互作用的实验结果。这些结果表明,有必要构建一个基于神经毡内氢离子波动力学的模型。在中枢神经系统的一个小规模实验模型——体外视网膜中,已经检测到了这些波。我们认为,大脑与心脏和肾脏一样,是一个水的状态具有功能性的系统。非线性热力学的应用支持了在方便的生物时空尺度上进行的实验,而对离子特性及其与水相互作用的理解则需要基于量子理论的解释。在我们的方法中,神经可塑性被视为一个更大过程的一部分,这个过程包括更高层次的脑功能;在这方面,神经毡内的氢离子波被认为具有生理和认知功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d059/4753343/8dd640d28fa7/NP2016-7192427.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验