Suppr超能文献

使用频率选择性非线性融合技术在非增强CT上增强灰白质区分度。

Enhanced gray-white matter differentiation on non-enhanced CT using a frequency selective non-linear blending.

作者信息

Bier Georg, Bongers Malte Niklas, Ditt Hendrik, Bender Benjamin, Ernemann Ulrike, Horger Marius

机构信息

Department of Diagnostic and Interventional Radiology, Eberhard Karls-University Tuebingen, Hoppe-Seyler-Str. 3, 72076, Tuebingen, Germany.

Imaging & Therapy Division, Siemens AG Healthcare Sector, Forchheim, Germany.

出版信息

Neuroradiology. 2016 Jul;58(7):649-55. doi: 10.1007/s00234-016-1674-1. Epub 2016 Mar 10.

Abstract

INTRODUCTION

The aim if this study is to find out if contrast between gray (GM) and white matter (WM) on non-enhanced brain CT (NECT) can be enhanced by using a frequency selective non-linear blending.

METHODS

Thirty consecutive patients (40 % female; mean age 67.73 ± 12.71 years), who underwent NECT of the brain, were retrospectively included in this study. Brain scan readings were performed by two radiologists independently, for NECT and subsequently the images were read using a new frequency selective non-linear blending algorithm (best contrast, BC). Optimal settings of BC for enhanced delineation of anatomical structures were set at an averaged center of 30 HU, averaged delta of 5 HU, and a slope of 5. For contrast-to-noise ratio calculation (CNR), gray and white matter attenuation values were measured for both NECT and BC in different anatomical structures.

RESULTS

CNR increase in the gray matter was 5.91 ± 2.45 for the cortical gray matter and 4.41 ± 1.82 for the basal ganglia. The contrast ratio between cortical gray and white matter was 1.87 and 1.7 (basal ganglia/WM) for BC quantification vs. 1.43 (cortex/WM) and 1.33 (basal ganglia/WM) for standard NECT (both p < 0.0001). Improved CNR did not depend on the anatomical structures measured.

CONCLUSION

Frequency selective non-linear blending allows better discrimination between WM and GM and therefore may enhance diagnostic accuracy of NECT.

摘要

引言

本研究的目的是探究在非增强脑CT(NECT)上,使用频率选择性非线性融合技术是否能够增强灰质(GM)和白质(WM)之间的对比度。

方法

本研究回顾性纳入了30例连续接受脑部NECT检查的患者(40%为女性;平均年龄67.73±12.71岁)。脑部扫描图像由两名放射科医生独立阅片,先阅NECT图像,随后使用一种新的频率选择性非线性融合算法(最佳对比度,BC)对图像进行阅片。为了更好地勾勒解剖结构,BC的最佳设置为平均中心值30 HU、平均差值5 HU和斜率5。为了计算对比噪声比(CNR),在不同解剖结构中测量了NECT和BC图像上灰质和白质的衰减值。

结果

皮质灰质的灰质CNR增加为5.91±2.45,基底节为4.41±1.82。对于BC定量,皮质灰质与白质的对比度为1.87(基底节/白质为1.7),而标准NECT为1.43(皮质/白质)和1.33(基底节/白质)(均p<0.0001)。CNR的改善不依赖于所测量的解剖结构。

结论

频率选择性非线性融合技术能够更好地区分白质和灰质,因此可能提高NECT的诊断准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验