内在可塑性与长时程增强协同作用,共同调节小脑浦肯野细胞平行纤维输入增益控制。
Intrinsic plasticity complements long-term potentiation in parallel fiber input gain control in cerebellar Purkinje cells.
机构信息
Department of Neuroscience, Erasmus University Medical Center, Rotterdam, The Netherlands.
出版信息
J Neurosci. 2010 Oct 13;30(41):13630-43. doi: 10.1523/JNEUROSCI.3226-10.2010.
Synaptic gain control and information storage in neural networks are mediated by alterations in synaptic transmission, such as in long-term potentiation (LTP). Here, we show using both in vitro and in vivo recordings from the rat cerebellum that tetanization protocols for the induction of LTP at parallel fiber (PF)-to-Purkinje cell synapses can also evoke increases in intrinsic excitability. This form of intrinsic plasticity shares with LTP a requirement for the activation of protein phosphatases 1, 2A, and 2B for induction. Purkinje cell intrinsic plasticity resembles CA1 hippocampal pyramidal cell intrinsic plasticity in that it requires activity of protein kinase A (PKA) and casein kinase 2 (CK2) and is mediated by a downregulation of SK-type calcium-sensitive K conductances. In addition, Purkinje cell intrinsic plasticity similarly results in enhanced spine calcium signaling. However, there are fundamental differences: first, while in the hippocampus increases in excitability result in a higher probability for LTP induction, intrinsic plasticity in Purkinje cells lowers the probability for subsequent LTP induction. Second, intrinsic plasticity raises the spontaneous spike frequency of Purkinje cells. The latter effect does not impair tonic spike firing in the target neurons of inhibitory Purkinje cell projections in the deep cerebellar nuclei, but lowers the Purkinje cell signal-to-noise ratio, thus reducing the PF readout. These observations suggest that intrinsic plasticity accompanies LTP of active PF synapses, while it reduces at weaker, nonpotentiated synapses the probability for subsequent potentiation and lowers the impact on the Purkinje cell output.
在神经网络中,突触传递的改变介导了突触增益控制和信息存储,例如长时程增强(LTP)。在这里,我们使用大鼠小脑的体外和体内记录表明,用于诱导平行纤维(PF)-浦肯野细胞突触 LTP 的强直刺激方案也可以引发内在兴奋性的增加。这种形式的内在可塑性与 LTP 具有相同的要求,即需要激活蛋白磷酸酶 1、2A 和 2B 进行诱导。浦肯野细胞内在可塑性与 CA1 海马锥体细胞内在可塑性相似,因为它需要蛋白激酶 A(PKA)和酪蛋白激酶 2(CK2)的活性,并通过下调 SK 型钙敏钾电导来介导。此外,浦肯野细胞内在可塑性同样导致增强的棘突钙信号。然而,存在根本差异:首先,虽然在海马体中,兴奋性的增加导致 LTP 诱导的可能性增加,但浦肯野细胞的内在可塑性降低了随后 LTP 诱导的可能性。其次,内在可塑性提高了浦肯野细胞的自发尖峰频率。后一种效应不会损害抑制性浦肯野细胞投射到深部小脑核靶神经元的紧张性尖峰放电,但降低了浦肯野细胞的信号噪声比,从而降低了 PF 的读出。这些观察结果表明,内在可塑性伴随着活跃的 PF 突触的 LTP,而在较弱的、未增强的突触中,它降低了随后增强的可能性,并降低了对浦肯野细胞输出的影响。