Suppr超能文献

NiftyFit:用于4D磁共振成像数据多参数模型拟合的软件包。

NiftyFit: a Software Package for Multi-parametric Model-Fitting of 4D Magnetic Resonance Imaging Data.

作者信息

Melbourne Andrew, Toussaint Nicolas, Owen David, Simpson Ivor, Anthopoulos Thanasis, De Vita Enrico, Atkinson David, Ourselin Sebastien

机构信息

Centre for Medical Image Computing, University College London, London, UK.

Academic Neuroradiological Unit, UCL Institute of Neurology, London, UK.

出版信息

Neuroinformatics. 2016 Jul;14(3):319-37. doi: 10.1007/s12021-016-9297-6.

Abstract

Multi-modal, multi-parametric Magnetic Resonance (MR) Imaging is becoming an increasingly sophisticated tool for neuroimaging. The relationships between parameters estimated from different individual MR modalities have the potential to transform our understanding of brain function, structure, development and disease. This article describes a new software package for such multi-contrast Magnetic Resonance Imaging that provides a unified model-fitting framework. We describe model-fitting functionality for Arterial Spin Labeled MRI, T1 Relaxometry, T2 relaxometry and Diffusion Weighted imaging, providing command line documentation to generate the figures in the manuscript. Software and data (using the nifti file format) used in this article are simultaneously provided for download. We also present some extended applications of the joint model fitting framework applied to diffusion weighted imaging and T2 relaxometry, in order to both improve parameter estimation in these models and generate new parameters that link different MR modalities. NiftyFit is intended as a clear and open-source educational release so that the user may adapt and develop their own functionality as they require.

摘要

多模态、多参数磁共振(MR)成像正成为一种日益复杂的神经成像工具。从不同个体MR模态估计的参数之间的关系有可能改变我们对脑功能、结构、发育和疾病的理解。本文介绍了一种用于这种多对比度磁共振成像的新软件包,它提供了一个统一的模型拟合框架。我们描述了动脉自旋标记MRI、T1弛豫测量、T2弛豫测量和扩散加权成像的模型拟合功能,并提供了命令行文档以生成手稿中的图表。本文使用的软件和数据(使用nifti文件格式)同时提供下载。我们还展示了联合模型拟合框架应用于扩散加权成像和T2弛豫测量的一些扩展应用,以便既改善这些模型中的参数估计,又生成连接不同MR模态的新参数。NiftyFit旨在作为一个清晰的开源教育版本,以便用户可以根据需要调整和开发自己的功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f0d/4896995/5c28799613ae/12021_2016_9297_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验