Suppr超能文献

抗扭结周围神经导管上的屏障涂层设计

Design of barrier coatings on kink-resistant peripheral nerve conduits.

作者信息

Clements Basak Acan, Bushman Jared, Murthy N Sanjeeva, Ezra Mindy, Pastore Christopher M, Kohn Joachim

机构信息

New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.

School of Pharmacy, University of Wyoming, Laramie, WY, USA.

出版信息

J Tissue Eng. 2016 Feb 5;7:2041731416629471. doi: 10.1177/2041731416629471. eCollection 2016 Jan-Dec.

Abstract

Here, we report on the design of braided peripheral nerve conduits with barrier coatings. Braiding of extruded polymer fibers generates nerve conduits with excellent mechanical properties, high flexibility, and significant kink-resistance. However, braiding also results in variable levels of porosity in the conduit wall, which can lead to the infiltration of fibrous tissue into the interior of the conduit. This problem can be controlled by the application of secondary barrier coatings. Using a critical size defect in a rat sciatic nerve model, the importance of controlling the porosity of the nerve conduit walls was explored. Braided conduits without barrier coatings allowed cellular infiltration that limited nerve recovery. Several types of secondary barrier coatings were tested in animal studies, including (1) electrospinning a layer of polymer fibers onto the surface of the conduit and (2) coating the conduit with a cross-linked hyaluronic acid-based hydrogel. Sixteen weeks after implantation, hyaluronic acid-coated conduits had higher axonal density, displayed higher muscle weight, and better electrophysiological signal recovery than uncoated conduits or conduits having an electrospun layer of polymer fibers. This study indicates that braiding is a promising method of fabrication to improve the mechanical properties of peripheral nerve conduits and demonstrates the need to control the porosity of the conduit wall to optimize functional nerve recovery.

摘要

在此,我们报告带有屏障涂层的编织型周围神经导管的设计。挤压聚合物纤维的编织可产生具有优异机械性能、高柔韧性和显著抗扭结性的神经导管。然而,编织也会导致导管壁孔隙率的不同程度变化,这可能会导致纤维组织渗入导管内部。这个问题可以通过应用二次屏障涂层来控制。利用大鼠坐骨神经模型中的临界尺寸缺损,探讨了控制神经导管壁孔隙率的重要性。没有屏障涂层的编织导管会允许细胞浸润,从而限制神经恢复。在动物研究中测试了几种类型的二次屏障涂层,包括(1)在导管表面静电纺丝一层聚合物纤维,以及(2)用基于透明质酸的交联水凝胶涂覆导管。植入16周后,与未涂层导管或具有静电纺丝聚合物纤维层的导管相比,透明质酸涂层导管具有更高的轴突密度、更高的肌肉重量和更好的电生理信号恢复。这项研究表明,编织是一种有前景的制造方法,可改善周围神经导管的机械性能,并证明需要控制导管壁的孔隙率以优化功能性神经恢复。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9d7/4765812/804fb6b0c00e/10.1177_2041731416629471-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验