Suppr超能文献

社交网络有助于推断肿瘤微环境中的因果关系。

Social networks help to infer causality in the tumor microenvironment.

作者信息

Crespo Isaac, Doucey Marie-Agnès, Xenarios Ioannis

机构信息

Vital-IT, SIB (Swiss Institute of Bioinformatics), University of Lausanne, Lausanne, Switzerland.

Ludwig Center for Cancer Research, University of Lausanne, Epalinges, Switzerland.

出版信息

BMC Res Notes. 2016 Mar 15;9:168. doi: 10.1186/s13104-016-1976-8.

Abstract

BACKGROUND

Networks have become a popular way to conceptualize a system of interacting elements, such as electronic circuits, social communication, metabolism or gene regulation. Network inference, analysis, and modeling techniques have been developed in different areas of science and technology, such as computer science, mathematics, physics, and biology, with an active interdisciplinary exchange of concepts and approaches. However, some concepts seem to belong to a specific field without a clear transferability to other domains. At the same time, it is increasingly recognized that within some biological systems--such as the tumor microenvironment--where different types of resident and infiltrating cells interact to carry out their functions, the complexity of the system demands a theoretical framework, such as statistical inference, graph analysis and dynamical models, in order to asses and study the information derived from high-throughput experimental technologies.

RESULTS

In this article we propose to adopt and adapt the concepts of influence and investment from the world of social network analysis to biological problems, and in particular to apply this approach to infer causality in the tumor microenvironment. We showed that constructing a bidirectional network of influence between cell and cell communication molecules allowed us to determine the direction of inferred regulations at the expression level and correctly recapitulate cause-effect relationships described in literature.

CONCLUSIONS

This work constitutes an example of a transfer of knowledge and concepts from the world of social network analysis to biomedical research, in particular to infer network causality in biological networks. This causality elucidation is essential to model the homeostatic response of biological systems to internal and external factors, such as environmental conditions, pathogens or treatments.

摘要

背景

网络已成为一种流行的方式,用于将相互作用的元素系统概念化,如电子电路、社会通信、新陈代谢或基因调控。网络推理、分析和建模技术已在不同的科学技术领域得到发展,如计算机科学、数学、物理学和生物学,不同领域之间积极进行概念和方法的跨学科交流。然而,有些概念似乎属于特定领域,无法明确转移到其他领域。与此同时,人们越来越认识到,在一些生物系统中——如肿瘤微环境——不同类型的驻留细胞和浸润细胞相互作用以执行其功能,系统的复杂性需要一个理论框架,如统计推理、图分析和动力学模型,以便评估和研究从高通量实验技术获得的信息。

结果

在本文中,我们建议采用并调整社会网络分析领域中的影响和投资概念,以解决生物学问题,特别是将这种方法应用于推断肿瘤微环境中的因果关系。我们表明,构建细胞与细胞通讯分子之间的双向影响网络,使我们能够在表达水平上确定推断调控的方向,并正确概括文献中描述的因果关系。

结论

这项工作是知识和概念从社会网络分析领域转移到生物医学研究的一个例子,特别是用于推断生物网络中的因果关系。这种因果关系的阐明对于模拟生物系统对内部和外部因素(如环境条件、病原体或治疗)的稳态反应至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a80/4793762/c03888db40d6/13104_2016_1976_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验