Garaulet Daniel L, Sun Kailiang, Li Wanhe, Wen Jiayu, Panzarino Alexandra M, O'Neil Jenna L, Hiesinger P Robin, Young Michael W, Lai Eric C
Sloan-Kettering Institute, Department of Developmental Biology, New York, New York 10065.
Sloan-Kettering Institute, Department of Developmental Biology, New York, New York 10065, Neuroscience Program, Weill Graduate School of Medical Sciences, Cornell University, New York, New York 10065.
J Neurosci. 2016 Mar 23;36(12):3414-21. doi: 10.1523/JNEUROSCI.3287-15.2016.
Circadian clocks enable organisms to anticipate and adapt to fluctuating environmental conditions. Despite substantial knowledge of central clock machineries, we have less understanding of how the central clock's behavioral outputs are regulated. Here, we identify Drosophila miR-124 as a critical regulator of diurnal activity. During normal light/dark cycles, mir-124 mutants exhibit profoundly abnormal locomotor activity profiles, including loss of anticipatory capacities at morning and evening transitions. Moreover,mir-124 mutants exhibited striking behavioral alterations in constant darkness (DD), including a temporal advance in peak activity. Nevertheless, anatomical and functional tests demonstrate a normal circadian pacemaker in mir-124 mutants, indicating this miRNA regulates clock output. Among the extensive miR-124 target network, heterozygosity for targets in the BMP pathway substantially corrected the evening activity phase shift in DD. Thus, excess BMP signaling drives specific circadian behavioral output defects in mir-124 knock-outs.
Circadian clocks control rhythmic behaviors of most life-forms. Despite extensive knowledge of the central clock, there is less understanding of how its behavioral outputs are regulated. Here, we identify a conserved neural microRNA as a critical regulator of diurnal behavior. We find Drosophila mir-124 mutants exhibit robust activity abnormalities during normal light/dark cycles and during constant darkness. Nevertheless, as the central pacemaker is functional in these mutants, miR-124 regulates clock output. We provide mechanistic insight by showing deregulation of miR-124 targets in BMP signaling drives specific mir-124 defects. In summary,Drosophila mir-124 mutants reveal post-transcriptional control of circadian activities, and impact of BMP signaling in behavioral output.
生物钟使生物体能够预测并适应不断变化的环境条件。尽管我们对中枢生物钟机制已有大量了解,但对于中枢生物钟的行为输出是如何调控的,我们了解得较少。在这里,我们确定果蝇miR-124是昼夜活动的关键调节因子。在正常的光/暗周期中,mir-124突变体表现出极其异常的运动活动模式,包括在早晚转换时失去预期能力。此外,mir-124突变体在持续黑暗(DD)中表现出显著的行为改变,包括活动峰值的时间提前。然而,解剖学和功能测试表明mir-124突变体中的昼夜节律起搏器是正常的,这表明这种miRNA调节生物钟输出。在广泛的miR-124靶标网络中,BMP信号通路中靶标的杂合性显著纠正了DD中的夜间活动相位偏移。因此,过量的BMP信号传导在mir-124基因敲除中导致特定的昼夜节律行为输出缺陷。
生物钟控制着大多数生命形式的节律行为。尽管对中枢生物钟已有广泛了解,但对于其行为输出是如何调控的,人们了解较少。在这里,我们确定一种保守的神经微小RNA是昼夜行为的关键调节因子。我们发现果蝇mir-124突变体在正常光/暗周期和持续黑暗期间表现出强烈的活动异常。然而,由于中枢起搏器在这些突变体中是有功能的,miR-124调节生物钟输出。我们通过显示BMP信号中miR-124靶标的失调驱动特定的mir-124缺陷,提供了机制上的见解。总之,果蝇mir-124突变体揭示了昼夜活动的转录后控制,以及BMP信号在行为输出中的影响。