Suppr超能文献

代谢组学时间序列数据在代谢网络信息背景下的功能解释策略。

A Strategy for Functional Interpretation of Metabolomic Time Series Data in Context of Metabolic Network Information.

机构信息

Department of Ecogenomics and Systems Biology, University of ViennaVienna, Austria; Vienna Metabolomics Center, University of ViennaVienna, Austria.

Department of Ecogenomics and Systems Biology, University of Vienna Vienna, Austria.

出版信息

Front Mol Biosci. 2016 Mar 7;3:6. doi: 10.3389/fmolb.2016.00006. eCollection 2016.

Abstract

The functional connection of experimental metabolic time series data with biochemical network information is an important, yet complex, issue in systems biology. Frequently, experimental analysis of diurnal, circadian, or developmental dynamics of metabolism results in a comprehensive and multidimensional data matrix comprising information about metabolite concentrations, protein levels, and/or enzyme activities. While, irrespective of the type of organism, the experimental high-throughput analysis of the transcriptome, proteome, and metabolome has become a common part of many systems biological studies, functional data integration in a biochemical and physiological context is still challenging. Here, an approach is presented which addresses the functional connection of experimental time series data with biochemical network information which can be inferred, for example, from a metabolic network reconstruction. Based on a time-continuous and variance-weighted regression analysis of experimental data, metabolic functions, i.e., first-order derivatives of metabolite concentrations, were related to time-dependent changes in other biochemically relevant metabolic functions, i.e., second-order derivatives of metabolite concentrations. This finally revealed time points of perturbed dependencies in metabolic functions indicating a modified biochemical interaction. The approach was validated using previously published experimental data on a diurnal time course of metabolite levels, enzyme activities, and metabolic flux simulations. To support and ease the presented approach of functional time series analysis, a graphical user interface including a test data set and a manual is provided which can be run within the numerical software environment Matlab®.

摘要

实验代谢时间序列数据与生化网络信息的功能连接是系统生物学中的一个重要而复杂的问题。通常,对代谢的昼夜、节律或发育动态的实验分析会产生一个全面的多维数据矩阵,其中包含代谢物浓度、蛋白质水平和/或酶活性的信息。虽然,无论生物体的类型如何,转录组、蛋白质组和代谢组的高通量实验分析已成为许多系统生物学研究的共同部分,但在生化和生理背景下进行功能数据集成仍然具有挑战性。在这里,提出了一种方法,用于解决实验时间序列数据与可以从代谢网络重建中推断出的生化网络信息的功能连接。基于对实验数据的时变和方差加权回归分析,代谢功能(即代谢物浓度的一阶导数)与其他生化相关代谢功能(即代谢物浓度的二阶导数)的时变变化相关。这最终揭示了代谢功能中受干扰的依赖关系的时间点,表明生化相互作用发生了改变。该方法使用先前发表的昼夜时间代谢物水平、酶活性和代谢通量模拟的实验数据进行了验证。为了支持和简化所提出的功能时间序列分析方法,提供了一个图形用户界面,其中包括一个测试数据集和一个手册,可以在数值软件环境 Matlab®中运行。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6859/4779852/f03358b13771/fmolb-03-00006-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验