Zeigler A C, Richardson W J, Holmes J W, Saucerman J J
Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA.
Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA.
J Mol Cell Cardiol. 2016 May;94:72-81. doi: 10.1016/j.yjmcc.2016.03.008. Epub 2016 Mar 23.
Cardiac fibroblasts support heart function, and aberrant fibroblast signaling can lead to fibrosis and cardiac dysfunction. Yet how signaling molecules drive myofibroblast differentiation and fibrosis in the complex signaling environment of cardiac injury remains unclear. We developed a large-scale computational model of cardiac fibroblast signaling in order to identify regulators of fibrosis under diverse signaling contexts. The model network integrates 10 signaling pathways, including 91 nodes and 134 reactions, and it correctly predicted 80% of independent previous experiments. The model predicted key fibrotic signaling regulators (e.g. reactive oxygen species, tissue growth factor β (TGFβ) receptor), whose function varied depending on the extracellular environment. We characterized how network structure relates to function, identified functional modules, and predicted cross-talk between TGFβ and mechanical signaling, which was validated experimentally in adult cardiac fibroblasts. This study provides a systems framework for predicting key regulators of fibroblast signaling across diverse signaling contexts.
心脏成纤维细胞支持心脏功能,而成纤维细胞信号异常可导致纤维化和心脏功能障碍。然而,在心脏损伤的复杂信号环境中,信号分子如何驱动肌成纤维细胞分化和纤维化仍不清楚。我们开发了一个大规模的心脏成纤维细胞信号计算模型,以识别不同信号背景下的纤维化调节因子。该模型网络整合了10条信号通路,包括91个节点和134个反应,并且正确预测了80%的之前独立实验结果。该模型预测了关键的纤维化信号调节因子(如活性氧、组织生长因子β (TGFβ) 受体),其功能因细胞外环境而异。我们表征了网络结构与功能的关系,识别了功能模块,并预测了TGFβ与机械信号之间的相互作用,这在成年心脏成纤维细胞中得到了实验验证。这项研究为预测不同信号背景下成纤维细胞信号的关键调节因子提供了一个系统框架。