Suppr超能文献

在纳米流体场效应晶体管中减缓 DNA 易位。

Slowing DNA Translocation in a Nanofluidic Field-Effect Transistor.

机构信息

Department of Electronic and Computer Engineering, ‡Division of Biomedical Engineering, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong S. A. R.

出版信息

ACS Nano. 2016 Apr 26;10(4):3985-94. doi: 10.1021/acsnano.6b00610. Epub 2016 Apr 1.

Abstract

Here, we present an experimental demonstration of slowing DNA translocation across a nanochannel by modulating the channel surface charge through an externally applied gate bias. The experiments were performed on a nanofluidic field-effect transistor, which is a monolithic integrated platform featuring a 50 nm-diameter in-plane alumina nanocapillary whose entire length is surrounded by a gate electrode. The field-effect transistor behavior was validated on the gating of ionic conductance and protein transport. The gating of DNA translocation was subsequently studied by measuring discrete current dips associated with single λ-DNA translocation events under a source-to-drain bias of 1 V. The translocation speeds under various gate bias conditions were extracted by fitting event histograms of the measured translocation time to the first passage time distributions obtained from a simple 1D biased diffusion model. A positive gate bias was observed to slow the translocation of single λ-DNA chains markedly; the translocation speed was reduced by an order of magnitude from 18.4 mm/s obtained under a floating gate down to 1.33 mm/s under a positive gate bias of 9 V. Therefore, a dynamic and flexible regulation of the DNA translocation speed, which is vital for single-molecule sequencing, can be achieved on this device by simply tuning the gate bias. The device is realized in a conventional semiconductor microfabrication process without the requirement of advanced lithography, and can be potentially further developed into a compact electronic single-molecule sequencer.

摘要

在这里,我们通过外部栅极偏压来调节纳米通道表面电荷,展示了一种在纳米通道中减缓 DNA translocation 的实验演示。该实验是在纳米流体场效应晶体管上进行的,该晶体管是一种单片集成平台,具有 50nm 直径的平面氧化铝纳米毛细管,其整个长度都被栅极电极包围。场效应晶体管的行为通过离子电导和蛋白质传输的门控进行了验证。随后,通过测量在源极到漏极偏压为 1V 下与单个 λ-DNA translocation 事件相关的离散电流下降,研究了 DNA translocation 的门控。通过将测量的 translocation 时间的事件直方图拟合到从简单的 1D 有偏扩散模型获得的首个通过时间分布,提取了各种栅极偏压条件下的 translocation 速度。观察到正栅极偏压显著减缓了单个 λ-DNA 链的 translocation;在浮栅下获得的 18.4mm/s 的 translocation 速度降低了一个数量级,降至 9V 正栅极偏压下的 1.33mm/s。因此,通过简单地调整栅极偏压,可以在该器件上实现对单分子测序至关重要的 DNA translocation 速度的动态和灵活调节。该器件是在常规半导体微制造工艺中实现的,不需要先进的光刻技术,并且可以进一步开发成紧凑型电子单分子测序仪。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验