Suppr超能文献

一种针对全脑功能连接性的多元格兰杰因果关系概念。

A Multivariate Granger Causality Concept towards Full Brain Functional Connectivity.

作者信息

Schmidt Christoph, Pester Britta, Schmid-Hertel Nicole, Witte Herbert, Wismüller Axel, Leistritz Lutz

机构信息

Institute of Medical Statistics, Computer Sciences and Documentation, Jena University Hospital, Friedrich Schiller University, Jena, Germany.

Institute of Anatomy I, Jena University Hospital, Friedrich Schiller University, Jena, Germany.

出版信息

PLoS One. 2016 Apr 11;11(4):e0153105. doi: 10.1371/journal.pone.0153105. eCollection 2016.

Abstract

Detecting changes of spatially high-resolution functional connectivity patterns in the brain is crucial for improving the fundamental understanding of brain function in both health and disease, yet still poses one of the biggest challenges in computational neuroscience. Currently, classical multivariate Granger Causality analyses of directed interactions between single process components in coupled systems are commonly restricted to spatially low- dimensional data, which requires a pre-selection or aggregation of time series as a preprocessing step. In this paper we propose a new fully multivariate Granger Causality approach with embedded dimension reduction that makes it possible to obtain a representation of functional connectivity for spatially high-dimensional data. The resulting functional connectivity networks may consist of several thousand vertices and thus contain more detailed information compared to connectivity networks obtained from approaches based on particular regions of interest. Our large scale Granger Causality approach is applied to synthetic and resting state fMRI data with a focus on how well network community structure, which represents a functional segmentation of the network, is preserved. It is demonstrated that a number of different community detection algorithms, which utilize a variety of algorithmic strategies and exploit topological features differently, reveal meaningful information on the underlying network module structure.

摘要

检测大脑中空间高分辨率功能连接模式的变化对于增进对健康和疾病状态下脑功能的基本理解至关重要,但仍是计算神经科学面临的最大挑战之一。目前,耦合系统中单个过程组件之间定向相互作用的经典多变量格兰杰因果分析通常仅限于空间低维数据,这需要将时间序列作为预处理步骤进行预选择或聚合。在本文中,我们提出了一种新的具有嵌入式降维的全多变量格兰杰因果方法,该方法能够获取空间高维数据的功能连接表示。由此产生的功能连接网络可能由数千个顶点组成,因此与基于特定感兴趣区域的方法所获得的连接网络相比,包含更详细的信息。我们的大规模格兰杰因果方法应用于合成数据和静息态功能磁共振成像数据,重点关注代表网络功能分割的网络社区结构的保留程度。结果表明,一些不同的社区检测算法,它们采用各种算法策略并以不同方式利用拓扑特征,揭示了有关潜在网络模块结构的有意义信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4048/4827851/c59aa72da704/pone.0153105.g011.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验