Suppr超能文献

使用条件随机场进行心肺睡眠阶段检测。

Cardiorespiratory Sleep Stage Detection Using Conditional Random Fields.

作者信息

Fonseca Pedro, den Teuling Niek, Long Xi, Aarts Ronald M

出版信息

IEEE J Biomed Health Inform. 2017 Jul;21(4):956-966. doi: 10.1109/JBHI.2016.2550104. Epub 2016 Apr 4.

Abstract

This paper explores the probabilistic properties of sleep stage sequences and transitions to improve the performance of sleep stage detection using cardiorespiratory features. A new classifier, based on conditional random fields, is used in different sleep stage detection tasks (N3, NREM, REM, and wake) in night-time recordings of electrocardiogram and respiratory inductance plethysmography of healthy subjects. Using a dataset of 342 polysomnographic recordings of healthy subjects, among which 135 with regular sleep architecture, it outperforms hidden Markov models and Bayesian linear discriminants in all tasks, achieving an average accuracy of 87.38% and kappa of 0.41 (87.27% and 0.49 for regular subjects) for N3 detection, 78.71% and 0.55 (80.34% and 0.56 for regular subjects) for NREM detection, 88.49% and 0.51 (87.35% and 0.57 for regular subjects) for REM, and 85.69% and 0.51 (90.42% and 0.52 for regular subjects) for wake. In comparison with the state of the art, and having been tested on a much larger dataset, the classifier was found to outperform most of the work reported in the literature for some of the tasks, in particular for subjects with regular sleep architecture. It achieves a comparable accuracy for N3, higher accuracy and kappa for REM, and higher accuracy and comparable kappa for NREM than the best performing classifiers described in the literature.

摘要

本文探讨睡眠阶段序列和转换的概率特性,以利用心肺特征提高睡眠阶段检测的性能。一种基于条件随机场的新型分类器,被用于健康受试者夜间心电图和呼吸感应体积描记术记录的不同睡眠阶段检测任务(N3、非快速眼动睡眠、快速眼动睡眠和清醒)。使用一个包含342名健康受试者多导睡眠图记录的数据集,其中135名具有规律的睡眠结构,在所有任务中,该分类器均优于隐马尔可夫模型和贝叶斯线性判别法,在N3检测中平均准确率达到87.38%,kappa值为0.41(规律受试者为87.27%和0.49),非快速眼动睡眠检测中为78.71%和0.55(规律受试者为80.34%和0.56),快速眼动睡眠检测中为88.49%和0.51(规律受试者为87.35%和0.57),清醒检测中为85.69%和0.51(规律受试者为90.42%和0.52)。与现有技术相比,并且在一个大得多的数据集上进行了测试,发现该分类器在某些任务中优于文献中报道的大多数工作,特别是对于具有规律睡眠结构的受试者。在N3检测中,它实现了可比的准确率,在快速眼动睡眠检测中准确率更高且kappa值更高,在非快速眼动睡眠检测中准确率更高且kappa值可比,优于文献中描述的性能最佳的分类器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验