Suppr超能文献

人类面部动作识别的神经基础

A Neural Basis of Facial Action Recognition in Humans.

作者信息

Srinivasan Ramprakash, Golomb Julie D, Martinez Aleix M

机构信息

Ohio State University, Columbus, Ohio 43210.

Ohio State University, Columbus, Ohio 43210

出版信息

J Neurosci. 2016 Apr 20;36(16):4434-42. doi: 10.1523/JNEUROSCI.1704-15.2016.

Abstract

UNLABELLED

By combining different facial muscle actions, called action units, humans can produce an extraordinarily large number of facial expressions. Computational models and studies in cognitive science and social psychology have long hypothesized that the brain needs to visually interpret these action units to understand other people's actions and intentions. Surprisingly, no studies have identified the neural basis of the visual recognition of these action units. Here, using functional magnetic resonance imaging and an innovative machine learning analysis approach, we identify a consistent and differential coding of action units in the brain. Crucially, in a brain region thought to be responsible for the processing of changeable aspects of the face, multivoxel pattern analysis could decode the presence of specific action units in an image. This coding was found to be consistent across people, facilitating the estimation of the perceived action units on participants not used to train the multivoxel decoder. Furthermore, this coding of action units was identified when participants attended to the emotion category of the facial expression, suggesting an interaction between the visual analysis of action units and emotion categorization as predicted by the computational models mentioned above. These results provide the first evidence for a representation of action units in the brain and suggest a mechanism for the analysis of large numbers of facial actions and a loss of this capacity in psychopathologies.

SIGNIFICANCE STATEMENT

Computational models and studies in cognitive and social psychology propound that visual recognition of facial expressions requires an intermediate step to identify visible facial changes caused by the movement of specific facial muscles. Because facial expressions are indeed created by moving one's facial muscles, it is logical to assume that our visual system solves this inverse problem. Here, using an innovative machine learning method and neuroimaging data, we identify for the first time a brain region responsible for the recognition of actions associated with specific facial muscles. Furthermore, this representation is preserved across subjects. Our machine learning analysis does not require mapping the data to a standard brain and may serve as an alternative to hyperalignment.

摘要

未标注

通过组合不同的面部肌肉动作(称为动作单元),人类能够产生数量极其庞大的面部表情。计算模型以及认知科学和社会心理学领域的研究长期以来一直假设,大脑需要对视这些动作单元进行视觉解读,以理解他人的动作和意图。令人惊讶的是,尚无研究确定这些动作单元视觉识别的神经基础。在此,我们利用功能磁共振成像和一种创新的机器学习分析方法,识别出大脑中动作单元的一致且有差异的编码。至关重要的是,在一个被认为负责处理面部可变方面的脑区,多体素模式分析能够解码图像中特定动作单元的存在。发现这种编码在个体间是一致的,有助于对未用于训练多体素解码器的参与者所感知到的动作单元进行估计。此外,当参与者关注面部表情的情感类别时,识别出了这种动作单元编码,这表明动作单元的视觉分析与情感分类之间存在相互作用,正如上述计算模型所预测的那样。这些结果为大脑中动作单元的表征提供了首个证据,并提出了一种分析大量面部动作的机制以及精神病理学中这种能力的丧失。

意义声明

计算模型以及认知和社会心理学领域的研究提出,面部表情的视觉识别需要一个中间步骤来识别由特定面部肌肉运动引起的可见面部变化。由于面部表情确实是通过移动面部肌肉产生的,所以合理推测我们的视觉系统解决了这个逆向问题。在此,我们使用创新的机器学习方法和神经成像数据,首次识别出一个负责识别与特定面部肌肉相关动作的脑区。此外,这种表征在个体间是保留的。我们的机器学习分析不需要将数据映射到标准脑图,并且可以作为超对齐的替代方法。

相似文献

1
A Neural Basis of Facial Action Recognition in Humans.
J Neurosci. 2016 Apr 20;36(16):4434-42. doi: 10.1523/JNEUROSCI.1704-15.2016.
3
Visual perception of facial expressions of emotion.
Curr Opin Psychol. 2017 Oct;17:27-33. doi: 10.1016/j.copsyc.2017.06.009. Epub 2017 Jun 21.
4
Facial color is an efficient mechanism to visually transmit emotion.
Proc Natl Acad Sci U S A. 2018 Apr 3;115(14):3581-3586. doi: 10.1073/pnas.1716084115. Epub 2018 Mar 19.
5
Targeting dynamic facial processing mechanisms in superior temporal sulcus using a novel fMRI neurofeedback target.
Neuroscience. 2019 May 15;406:97-108. doi: 10.1016/j.neuroscience.2019.02.024. Epub 2019 Feb 28.
8
Expression-dependent susceptibility to face distortions in processing of facial expressions of emotion.
Vision Res. 2019 Apr;157:112-122. doi: 10.1016/j.visres.2018.02.001. Epub 2018 Mar 5.
9
Neural substrates of the ability to recognize facial expressions: a voxel-based morphometry study.
Soc Cogn Affect Neurosci. 2017 Mar 1;12(3):487-495. doi: 10.1093/scan/nsw142.
10
Spatially generalizable representations of facial expressions: Decoding across partial face samples.
Cortex. 2018 Apr;101:31-43. doi: 10.1016/j.cortex.2017.11.016. Epub 2017 Dec 6.

引用本文的文献

1
Can deepfakes be used to study emotion perception? A comparison of dynamic face stimuli.
Behav Res Methods. 2024 Oct;56(7):7674-7690. doi: 10.3758/s13428-024-02443-y. Epub 2024 Jun 4.
2
Conscious observational behavior in recognizing landmarks in facial expressions.
PLoS One. 2023 Oct 4;18(10):e0291735. doi: 10.1371/journal.pone.0291735. eCollection 2023.
3
Fast Temporal Graph Convolutional Model for Skeleton-Based Action Recognition.
Sensors (Basel). 2022 Sep 20;22(19):7117. doi: 10.3390/s22197117.
5
Towards Machine Recognition of Facial Expressions of Pain in Horses.
Animals (Basel). 2021 Jun 1;11(6):1643. doi: 10.3390/ani11061643.
6
Structural remodeling in related brain regions in patients with facial synkinesis.
Neural Regen Res. 2021 Dec;16(12):2528-2533. doi: 10.4103/1673-5374.313055.
7
The influence of spatial location on same-different judgments of facial identity and expression.
J Exp Psychol Hum Percept Perform. 2020 Oct 22. doi: 10.1037/xhp0000872.
8
Computational approaches to the neuroscience of social perception.
Soc Cogn Affect Neurosci. 2021 Aug 5;16(8):827-837. doi: 10.1093/scan/nsaa127.
10

本文引用的文献

1
Investigating the brain basis of facial expression perception using multi-voxel pattern analysis.
Cortex. 2015 Aug;69:131-40. doi: 10.1016/j.cortex.2015.05.003. Epub 2015 May 14.
2
Distinct populations of neurons respond to emotional valence and arousal in the human subthalamic nucleus.
Proc Natl Acad Sci U S A. 2015 Mar 10;112(10):3116-21. doi: 10.1073/pnas.1410709112. Epub 2015 Feb 23.
3
A common neural code for perceived and inferred emotion.
J Neurosci. 2014 Nov 26;34(48):15997-6008. doi: 10.1523/JNEUROSCI.1676-14.2014.
4
The functional architecture of the ventral temporal cortex and its role in categorization.
Nat Rev Neurosci. 2014 Aug;15(8):536-48. doi: 10.1038/nrn3747. Epub 2014 Jun 25.
5
Compound facial expressions of emotion.
Proc Natl Acad Sci U S A. 2014 Apr 15;111(15):E1454-62. doi: 10.1073/pnas.1322355111. Epub 2014 Mar 31.
6
Automatic decoding of facial movements reveals deceptive pain expressions.
Curr Biol. 2014 Mar 31;24(7):738-43. doi: 10.1016/j.cub.2014.02.009. Epub 2014 Mar 20.
8
Brain networks subserving the evaluation of static and dynamic facial expressions.
Cortex. 2013 Oct;49(9):2462-72. doi: 10.1016/j.cortex.2013.01.002. Epub 2013 Jan 17.
10
Morphing between expressions dissociates continuous from categorical representations of facial expression in the human brain.
Proc Natl Acad Sci U S A. 2012 Dec 18;109(51):21164-9. doi: 10.1073/pnas.1212207110. Epub 2012 Dec 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验