Suppr超能文献

运动模型的稳健性:模型能否弥合数据集的时间尺度与行为过程之间的差距?

Robustness of movement models: can models bridge the gap between temporal scales of data sets and behavioural processes?

作者信息

Schlägel Ulrike E, Lewis Mark A

机构信息

Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, T6G 2G1, Canada.

Institute of Biochemistry and Biology, Plant Ecology and Conservation Biology, University of Potsdam, Am Mühlenberg 3, 14476, Potsdam, Germany.

出版信息

J Math Biol. 2016 Dec;73(6-7):1691-1726. doi: 10.1007/s00285-016-1005-5. Epub 2016 Apr 20.

Abstract

Discrete-time random walks and their extensions are common tools for analyzing animal movement data. In these analyses, resolution of temporal discretization is a critical feature. Ideally, a model both mirrors the relevant temporal scale of the biological process of interest and matches the data sampling rate. Challenges arise when resolution of data is too coarse due to technological constraints, or when we wish to extrapolate results or compare results obtained from data with different resolutions. Drawing loosely on the concept of robustness in statistics, we propose a rigorous mathematical framework for studying movement models' robustness against changes in temporal resolution. In this framework, we define varying levels of robustness as formal model properties, focusing on random walk models with spatially-explicit component. With the new framework, we can investigate whether models can validly be applied to data across varying temporal resolutions and how we can account for these different resolutions in statistical inference results. We apply the new framework to movement-based resource selection models, demonstrating both analytical and numerical calculations, as well as a Monte Carlo simulation approach. While exact robustness is rare, the concept of approximate robustness provides a promising new direction for analyzing movement models.

摘要

离散时间随机游走及其扩展是分析动物运动数据的常用工具。在这些分析中,时间离散化的分辨率是一个关键特征。理想情况下,模型既能反映感兴趣的生物过程的相关时间尺度,又能与数据采样率相匹配。当由于技术限制数据分辨率过于粗糙时,或者当我们希望外推结果或将从不同分辨率数据获得的结果进行比较时,就会出现挑战。借鉴统计学中稳健性的概念,我们提出了一个严格的数学框架来研究运动模型对时间分辨率变化的稳健性。在这个框架中,我们将不同程度的稳健性定义为形式化的模型属性,重点关注具有空间明确成分的随机游走模型。借助这个新框架,我们可以研究模型是否能够有效地应用于不同时间分辨率的数据,以及我们如何在统计推断结果中考虑这些不同的分辨率。我们将新框架应用于基于运动的资源选择模型,展示了分析计算、数值计算以及蒙特卡罗模拟方法。虽然精确的稳健性很少见,但近似稳健性的概念为分析运动模型提供了一个有前景的新方向。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验