Nakhnikian A, Ito S, Dwiel L L, Grasse L M, Rebec G V, Lauridsen L N, Beggs J M
Program in Neuroscience, 1101 E. 10th St., Bloomington, IN 47405, United States; Cognitive Science Program, 1900 E. 10th St., Bloomington, IN 47405, United States; Indiana University, Bloomington, United States.
Santa Cruz Institute for Particle Physics, 1156 High St., Santa Cruz, CA 95064, United States; University of California, Santa Cruz, United States.
J Neurosci Methods. 2016 Aug 30;269:61-73. doi: 10.1016/j.jneumeth.2016.04.019. Epub 2016 Apr 26.
Cross-frequency coupling (CFC) occurs when non-identical frequency components entrain one another. A ubiquitous example from neuroscience is low frequency phase to high frequency amplitude coupling in electrophysiological signals. Seminal work by Canolty revealed CFC in human ECoG data. Established methods band-pass the data into component frequencies then convert the band-passed signals into the analytic representation, from which we infer the instantaneous amplitude and phase of each component. Though powerful, such methods resolve signals with respect to time and frequency without addressing the multiresolution problem.
We build upon the ground-breaking work of Canolty and others and derive a wavelet-based CFC detection algorithm that efficiently searches a range of frequencies using a sequence of filters with optimal trade-off between time and frequency resolution. We validate our method using simulated data and analyze CFC within and between the primary motor cortex and dorsal striatum of rats under ketamine-xylazine anesthesia.
Our method detects the correct CFC in simulated data and reveals CFC between frequency bands that were previously shown to participate in corticostriatal effective connectivity.
Other CFC detection methods address the need to increase bandwidth when analyzing high frequency components but none to date permit rigorous bandwidth selection with no a priori knowledge of underlying CFC. Our method is thus particularly useful for exploratory studies.
The method developed here permits rigorous and efficient exploration of a hypothesis space and is particularly useful when the frequencies participating in CFC are unknown.
当不同频率成分相互夹带时,就会发生交叉频率耦合(CFC)。神经科学中一个普遍的例子是电生理信号中低频相位与高频幅度的耦合。卡诺蒂的开创性工作揭示了人类皮层脑电图(ECoG)数据中的CFC。既定方法将数据带通到各个成分频率,然后将带通信号转换为解析表示形式,从中我们可以推断出每个成分的瞬时幅度和相位。尽管这些方法很强大,但它们在时间和频率方面解析信号时并未解决多分辨率问题。
我们在卡诺蒂等人的开创性工作基础上,推导了一种基于小波的CFC检测算法,该算法使用一系列滤波器在时间和频率分辨率之间进行最佳权衡,从而有效地搜索一系列频率。我们使用模拟数据验证了我们的方法,并分析了氯胺酮-赛拉嗪麻醉下大鼠初级运动皮层和背侧纹状体内以及它们之间的CFC。
我们的方法在模拟数据中检测到了正确的CFC,并揭示了先前显示参与皮质纹状体有效连接的频段之间的CFC。
其他CFC检测方法解决了分析高频成分时增加带宽的需求,但迄今为止,没有一种方法能够在没有关于潜在CFC的先验知识的情况下进行严格的带宽选择。因此,我们的方法对于探索性研究特别有用。
这里开发的方法允许对假设空间进行严格而有效的探索,并且在参与CFC的频率未知时特别有用。