Suppr超能文献

硅基石墨烯场效应晶体管中漏极电流饱和及电压增益的改善

Improved Drain Current Saturation and Voltage Gain in Graphene-on-Silicon Field Effect Transistors.

作者信息

Song Seung Min, Bong Jae Hoon, Hwang Wan Sik, Cho Byung Jin

机构信息

Department of Electrical Engineering, KAIST, Daejeon, 305-338 Korea.

Department of Materials Engineering, Korea Aerospace University, Goyang, 412-791, Korea.

出版信息

Sci Rep. 2016 May 4;6:25392. doi: 10.1038/srep25392.

Abstract

Graphene devices for radio frequency (RF) applications are of great interest due to their excellent carrier mobility and saturation velocity. However, the insufficient current saturation in graphene field effect transistors (FETs) is a barrier preventing enhancements of the maximum oscillation frequency and voltage gain, both of which should be improved for RF transistors. Achieving a high output resistance is therefore a crucial step for graphene to be utilized in RF applications. In the present study, we report high output resistances and voltage gains in graphene-on-silicon (GoS) FETs. This is achieved by utilizing bare silicon as a supporting substrate without an insulating layer under the graphene. The GoSFETs exhibit a maximum output resistance of 2.5 MΩ∙μm, maximum intrinsic voltage gain of 28 dB, and maximum voltage gain of 9 dB. This method opens a new route to overcome the limitations of conventional graphene-on-insulator (GoI) FETs and subsequently brings graphene electronics closer to practical usage.

摘要

用于射频(RF)应用的石墨烯器件因其出色的载流子迁移率和饱和速度而备受关注。然而,石墨烯场效应晶体管(FET)中电流饱和不足是阻碍最大振荡频率和电压增益提高的一个障碍,而对于射频晶体管来说,这两者都需要改进。因此,实现高输出电阻是石墨烯用于射频应用的关键一步。在本研究中,我们报告了硅基石墨烯(GoS)FET中的高输出电阻和电压增益。这是通过使用裸硅作为支撑衬底,且在石墨烯下方不设置绝缘层来实现的。GoS FET表现出2.5 MΩ∙μm的最大输出电阻、28 dB的最大本征电压增益以及9 dB的最大电压增益。这种方法开辟了一条新途径,以克服传统绝缘体上石墨烯(GoI)FET的局限性,并随后使石墨烯电子学更接近实际应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e192/4855167/7e47dd1eb799/srep25392-f1.jpg

相似文献

4
Carbon Nanotube Based Radio Frequency Transistors for K-Band Amplifiers.
ACS Appl Mater Interfaces. 2021 Aug 11;13(31):37475-37482. doi: 10.1021/acsami.1c07782. Epub 2021 Aug 2.
6
Flexible Graphene Field-Effect Transistors Encapsulated in Hexagonal Boron Nitride.
ACS Nano. 2015 Sep 22;9(9):8953-9. doi: 10.1021/acsnano.5b02816. Epub 2015 Aug 17.
7
High-frequency graphene voltage amplifier.
Nano Lett. 2011 Sep 14;11(9):3690-3. doi: 10.1021/nl2016637. Epub 2011 Aug 5.
8
Advances in the fabrication of graphene transistors on flexible substrates.
Beilstein J Nanotechnol. 2017 Feb 20;8:467-474. doi: 10.3762/bjnano.8.50. eCollection 2017.
9
Field effect transistors with current saturation and voltage gain in ultrathin ReS2.
ACS Nano. 2015 Jan 27;9(1):363-70. doi: 10.1021/nn505354a. Epub 2014 Dec 24.
10
Improved performance of graphene transistors by strain engineering.
Nanotechnology. 2014 Apr 25;25(16):165201. doi: 10.1088/0957-4484/25/16/165201. Epub 2014 Mar 26.

引用本文的文献

1
A Review on Graphene-Based Light Emitting Functional Devices.
Molecules. 2020 Sep 14;25(18):4217. doi: 10.3390/molecules25184217.
2
High-Gain Graphene Transistors with a Thin AlOx Top-Gate Oxide.
Sci Rep. 2017 May 25;7(1):2419. doi: 10.1038/s41598-017-02541-2.
3
Flexible bottom-gate graphene transistors on Parylene C substrate and the effect of current annealing.
Appl Phys Lett. 2016 Oct 10;109(15):152105. doi: 10.1063/1.4964853. Epub 2016 Oct 13.

本文引用的文献

1
A roadmap for graphene.
Nature. 2012 Oct 11;490(7419):192-200. doi: 10.1038/nature11458.
2
High-frequency self-aligned graphene transistors with transferred gate stacks.
Proc Natl Acad Sci U S A. 2012 Jul 17;109(29):11588-92. doi: 10.1073/pnas.1205696109. Epub 2012 Jul 2.
3
Graphene barristor, a triode device with a gate-controlled Schottky barrier.
Science. 2012 Jun 1;336(6085):1140-3. doi: 10.1126/science.1220527. Epub 2012 May 17.
5
State-of-the-art graphene high-frequency electronics.
Nano Lett. 2012 Jun 13;12(6):3062-7. doi: 10.1021/nl300904k. Epub 2012 May 14.
6
Self-aligned fabrication of graphene RF transistors with T-shaped gate.
ACS Nano. 2012 Apr 24;6(4):3371-6. doi: 10.1021/nn300393c. Epub 2012 Mar 20.
7
Current saturation and voltage gain in bilayer graphene field effect transistors.
Nano Lett. 2012 Mar 14;12(3):1324-8. doi: 10.1021/nl2038634. Epub 2012 Feb 22.
8
Three-terminal graphene negative differential resistance devices.
ACS Nano. 2012 Mar 27;6(3):2610-6. doi: 10.1021/nn205106z. Epub 2012 Feb 16.
9
High-frequency graphene voltage amplifier.
Nano Lett. 2011 Sep 14;11(9):3690-3. doi: 10.1021/nl2016637. Epub 2011 Aug 5.
10
High-frequency, scaled graphene transistors on diamond-like carbon.
Nature. 2011 Apr 7;472(7341):74-8. doi: 10.1038/nature09979.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验