Riviello Elisabeth D, Kiviri Willy, Fowler Robert A, Mueller Ariel, Novack Victor, Banner-Goodspeed Valerie M, Weinkauf Julia L, Talmor Daniel S, Twagirumugabe Theogene
Department of Medicine, University of Rwanda, College of Medicine and Health Sciences, Kigali, Rwanda.
Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States of America.
PLoS One. 2016 May 19;11(5):e0155858. doi: 10.1371/journal.pone.0155858. eCollection 2016.
Intensive Care Unit (ICU) risk prediction models are used to compare outcomes for quality improvement initiatives, benchmarking, and research. While such models provide robust tools in high-income countries, an ICU risk prediction model has not been validated in a low-income country where ICU population characteristics are different from those in high-income countries, and where laboratory-based patient data are often unavailable. We sought to validate the Mortality Probability Admission Model, version III (MPM0-III) in two public ICUs in Rwanda and to develop a new Rwanda Mortality Probability Model (R-MPM) for use in low-income countries.
We prospectively collected data on all adult patients admitted to Rwanda's two public ICUs between August 19, 2013 and October 6, 2014. We described demographic and presenting characteristics and outcomes. We assessed the discrimination and calibration of the MPM0-III model. Using stepwise selection, we developed a new logistic model for risk prediction, the R-MPM, and used bootstrapping techniques to test for optimism in the model.
Among 427 consecutive adults, the median age was 34 (IQR 25-47) years and mortality was 48.7%. Mechanical ventilation was initiated for 85.3%, and 41.9% received vasopressors. The MPM0-III predicted mortality with area under the receiver operating characteristic curve of 0.72 and Hosmer-Lemeshow chi-square statistic p = 0.024. We developed a new model using five variables: age, suspected or confirmed infection within 24 hours of ICU admission, hypotension or shock as a reason for ICU admission, Glasgow Coma Scale score at ICU admission, and heart rate at ICU admission. Using these five variables, the R-MPM predicted outcomes with area under the ROC curve of 0.81 with 95% confidence interval of (0.77, 0.86), and Hosmer-Lemeshow chi-square statistic p = 0.154.
The MPM0-III has modest ability to predict mortality in a population of Rwandan ICU patients. The R-MPM is an alternative risk prediction model with fewer variables and better predictive power. If validated in other critically ill patients in a broad range of settings, the model has the potential to improve the reliability of comparisons used for critical care research and quality improvement initiatives in low-income countries.
重症监护病房(ICU)风险预测模型用于比较质量改进计划、基准测试和研究的结果。虽然此类模型在高收入国家提供了强大的工具,但在低收入国家尚未验证ICU风险预测模型,因为低收入国家的ICU患者特征与高收入国家不同,且通常无法获得基于实验室的患者数据。我们试图在卢旺达的两个公共ICU中验证死亡率概率入院模型III版(MPM0-III),并开发一种新的卢旺达死亡率概率模型(R-MPM)以供低收入国家使用。
我们前瞻性地收集了2013年8月19日至2014年10月6日期间入住卢旺达两个公共ICU的所有成年患者的数据。我们描述了人口统计学和就诊特征及结果。我们评估了MPM0-III模型的区分度和校准度。使用逐步选择法,我们开发了一种新的风险预测逻辑模型R-MPM,并使用自助法检验模型中的乐观性。
在427例连续的成年人中,中位年龄为34岁(四分位间距25-47岁),死亡率为48.7%。85.3%的患者开始机械通气,41.9%的患者接受血管升压药治疗。MPM0-III预测死亡率的受试者工作特征曲线下面积为0.72,Hosmer-Lemeshow卡方统计量p = 0.024。我们使用五个变量开发了一个新模型:年龄、ICU入院后24小时内疑似或确诊感染、因低血压或休克入住ICU、ICU入院时的格拉斯哥昏迷量表评分以及ICU入院时的心率。使用这五个变量,R-MPM预测结果的ROC曲线下面积为0.81,95%置信区间为(0.77, 0.86),Hosmer-Lemeshow卡方统计量p = 0.154。
MPM0-III在卢旺达ICU患者群体中预测死亡率的能力有限。R-MPM是一种变量较少且预测能力更强的替代风险预测模型。如果在广泛环境中的其他危重病患者中得到验证,该模型有可能提高低收入国家重症监护研究和质量改进计划中比较的可靠性。