Suppr超能文献

飞秒激光控制硅中非晶-晶纳米光栅的自组装。

Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon.

机构信息

Laser Processing Group, Instituto de Optica, CSIC, Serrano 121, 28006 Madrid, Spain.

出版信息

Nanotechnology. 2016 Jul 1;27(26):265602. doi: 10.1088/0957-4484/27/26/265602. Epub 2016 May 20.

Abstract

Self-assembly (SA) of molecular units to form regular, periodic extended structures is a powerful bottom-up technique for nanopatterning, inspired by nature. SA can be triggered in all classes of solid materials, for instance, by femtosecond laser pulses leading to the formation of laser-induced periodic surface structures (LIPSS) with a period slightly shorter than the laser wavelength. This approach, though, typically involves considerable material ablation, which leads to an unwanted increase of the surface roughness. We present a new strategy to fabricate high-precision nanograting structures in silicon, consisting of alternating amorphous and crystalline lines, with almost no material removal. The strategy can be applied to static irradiation experiments and can be extended into one and two dimensions by scanning the laser beam over the sample surface. We demonstrate that lines and areas with parallel nanofringe patterns can be written by an adequate choice of spot size, repetition rate and scan velocity, keeping a constant effective pulse number (N eff) per area for a given laser wavelength. A deviation from this pulse number leads either to inhomogeneous or ablative structures. Furthermore, we demonstrate that this approach can be used with different laser systems having widely different wavelengths (1030 nm, 800 nm, 400 nm), pulse durations (370 fs, 100 fs) and repetition rates (500 kHz, 100 Hz, single pulse) and that the grating period can also be tuned by changing the angle of laser beam incidence. The grating structures can be erased by irradiation with a single nanosecond laser pulse, triggering recrystallization of the amorphous stripes. Given the large differences in electrical conductivity between the two phases, our structures could find new applications in nanoelectronics.

摘要

分子单元自组装(SA)形成规则、周期性的扩展结构,是一种受自然启发的、用于纳米图案化的强大自下而上的技术。SA 可以在所有类型的固体材料中触发,例如,通过飞秒激光脉冲导致形成激光诱导周期性表面结构(LIPSS),其周期略短于激光波长。然而,这种方法通常涉及相当大的材料烧蚀,这导致表面粗糙度的不期望增加。我们提出了一种在硅中制造高精度纳米光栅结构的新策略,该结构由交替的非晶和晶体线组成,几乎没有材料去除。该策略可应用于静态辐照实验,并可通过在样品表面上扫描激光束扩展到一维和二维。我们证明,通过适当选择光斑尺寸、重复率和扫描速度,可以写入具有平行纳米条纹图案的线和区域,对于给定的激光波长,每个区域保持恒定的有效脉冲数(N eff)。偏离这个脉冲数会导致不均匀或烧蚀结构。此外,我们证明,这种方法可以与具有广泛不同波长(1030nm、800nm、400nm)、脉冲持续时间(370fs、100fs)和重复率(500kHz、100Hz、单脉冲)的不同激光系统一起使用,并且可以通过改变激光束入射角来调整光栅周期。通过用单个纳秒激光脉冲辐照,可以擦除光栅结构,触发非晶条纹的再结晶。考虑到两相之间的电导率存在很大差异,我们的结构可能在纳米电子学中找到新的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验