Suppr超能文献

阐明效应子在植物-真菌相互作用中的作用:进展与挑战

Elucidating the Role of Effectors in Plant-Fungal Interactions: Progress and Challenges.

作者信息

Selin Carrie, de Kievit Teresa R, Belmonte Mark F, Fernando W G Dilantha

机构信息

Department of Plant Science, University of Manitoba Winnipeg, MB, Canada.

Department of Microbiology, University of Manitoba Winnipeg, MB, Canada.

出版信息

Front Microbiol. 2016 Apr 27;7:600. doi: 10.3389/fmicb.2016.00600. eCollection 2016.

Abstract

Pathogenic fungi have diverse growth lifestyles that support fungal colonization on plants. Successful colonization and infection for all lifestyles depends upon the ability to modify living host plants to sequester the necessary nutrients required for growth and reproduction. Secretion of virulence determinants referred to as "effectors" is assumed to be the key governing factor that determines host infection and colonization. Effector proteins are capable of suppressing plant defense responses and alter plant physiology to accommodate fungal invaders. This review focuses on effector molecules of biotrophic and hemibiotrophic plant pathogenic fungi, and the mechanism required for the release and uptake of effector molecules by the fungi and plant cells, respectively. We also place emphasis on the discovery of effectors, difficulties associated with predicting the effector repertoire, and fungal genomic features that have helped promote effector diversity leading to fungal evolution. We discuss the role of specific effectors found in biotrophic and hemibiotrophic fungi and examine how CRISPR/Cas9 technology may provide a new avenue for accelerating our ability in the discovery of fungal effector function.

摘要

致病真菌具有多种生长方式,这些方式有助于真菌在植物上定殖。对于所有生长方式而言,成功的定殖和感染取决于改变活的寄主植物以获取生长和繁殖所需必要养分的能力。被称为“效应子”的毒力决定因子的分泌被认为是决定寄主感染和定殖的关键控制因素。效应子蛋白能够抑制植物防御反应并改变植物生理状态以适应真菌入侵者。本综述聚焦于活体营养型和半活体营养型植物致病真菌的效应子分子,以及真菌和植物细胞分别释放和摄取效应子分子所需的机制。我们还着重介绍了效应子的发现、预测效应子库所面临的困难,以及有助于促进效应子多样性从而导致真菌进化的真菌基因组特征。我们讨论了在活体营养型和半活体营养型真菌中发现的特定效应子的作用,并探讨了CRISPR/Cas9技术如何可能为加快我们发现真菌效应子功能的能力提供一条新途径。

相似文献

1
Elucidating the Role of Effectors in Plant-Fungal Interactions: Progress and Challenges.
Front Microbiol. 2016 Apr 27;7:600. doi: 10.3389/fmicb.2016.00600. eCollection 2016.
2
Fungal effectors and plant susceptibility.
Annu Rev Plant Biol. 2015;66:513-45. doi: 10.1146/annurev-arplant-043014-114623.
3
Fungal effectors, the double edge sword of phytopathogens.
Curr Genet. 2021 Feb;67(1):27-40. doi: 10.1007/s00294-020-01118-3. Epub 2020 Nov 4.
4
Challenges and progress towards understanding the role of effectors in plant-fungal interactions.
Curr Opin Plant Biol. 2012 Aug;15(4):477-82. doi: 10.1016/j.pbi.2012.05.003. Epub 2012 Jun 1.
5
Effector Biology of Biotrophic Plant Fungal Pathogens: Current Advances and Future Prospects.
Microbiol Res. 2020 Dec;241:126567. doi: 10.1016/j.micres.2020.126567. Epub 2020 Aug 23.
6
The role of effectors of biotrophic and hemibiotrophic fungi in infection.
Cell Microbiol. 2011 Dec;13(12):1849-57. doi: 10.1111/j.1462-5822.2011.01665.x. Epub 2011 Sep 14.
7
Pathogenic strategies and immune mechanisms to necrotrophs: Differences and similarities to biotrophs and hemibiotrophs.
Curr Opin Plant Biol. 2022 Oct;69:102291. doi: 10.1016/j.pbi.2022.102291. Epub 2022 Sep 2.
8
Effectors of Plant Necrotrophic Fungi.
Front Plant Sci. 2021 Jun 4;12:687713. doi: 10.3389/fpls.2021.687713. eCollection 2021.
9
Biotrophic Fungal Pathogens: a Critical Overview.
Appl Biochem Biotechnol. 2023 Jan;195(1):1-16. doi: 10.1007/s12010-022-04087-0. Epub 2022 Aug 11.
10
as a Model to Study Effector-Like Molecules.
Front Microbiol. 2019 May 15;10:1030. doi: 10.3389/fmicb.2019.01030. eCollection 2019.

引用本文的文献

1
Effectors of plants pathogenic fungi and fungal like microbes: a comprehensive review on mechanisms, roles, and host interactions.
Front Plant Sci. 2025 Jul 29;16:1626960. doi: 10.3389/fpls.2025.1626960. eCollection 2025.
4
Transcriptomic atlas throughout Coccidioides development reveals key phase-enriched transcripts of this important fungal pathogen.
PLoS Biol. 2025 Apr 15;23(4):e3003066. doi: 10.1371/journal.pbio.3003066. eCollection 2025 Apr.
7
An overview of symbiotic and pathogenic interactions at the fungi-plant interface under environmental constraints.
Front Fungal Biol. 2024 Oct 25;5:1363460. doi: 10.3389/ffunb.2024.1363460. eCollection 2024.
10
Evaluation of cell death-inducing activity of spp. effectors in several plants using a modified TRV expression system.
Front Plant Sci. 2024 Aug 16;15:1428613. doi: 10.3389/fpls.2024.1428613. eCollection 2024.

本文引用的文献

1
Efficient gene editing in with CRISPR technology.
Fungal Biol Biotechnol. 2015 Jul 15;2:4. doi: 10.1186/s40694-015-0015-1. eCollection 2015.
2
Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system.
Cell Discov. 2015 May 12;1:15007. doi: 10.1038/celldisc.2015.7. eCollection 2015.
4
EffectorP: predicting fungal effector proteins from secretomes using machine learning.
New Phytol. 2016 Apr;210(2):743-61. doi: 10.1111/nph.13794. Epub 2015 Dec 17.
5
A multiplex CRISPR/Cas9 platform for fast and efficient editing of multiple genes in Arabidopsis.
Plant Cell Rep. 2016 Jul;35(7):1519-33. doi: 10.1007/s00299-015-1900-z. Epub 2015 Dec 10.
6
A game of hide and seek between avirulence genes AvrLm4-7 and AvrLm3 in Leptosphaeria maculans.
New Phytol. 2016 Mar;209(4):1613-24. doi: 10.1111/nph.13736. Epub 2015 Nov 23.
7
The effector repertoire of Fusarium oxysporum determines the tomato xylem proteome composition following infection.
Front Plant Sci. 2015 Nov 4;6:967. doi: 10.3389/fpls.2015.00967. eCollection 2015.
9
Efficient disruption and replacement of an effector gene in the oomycete Phytophthora sojae using CRISPR/Cas9.
Mol Plant Pathol. 2016 Jan;17(1):127-39. doi: 10.1111/mpp.12318. Epub 2015 Nov 11.
10
Plant cells under siege: plant immune system versus pathogen effectors.
Curr Opin Plant Biol. 2015 Dec;28:1-8. doi: 10.1016/j.pbi.2015.08.008. Epub 2015 Sep 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验