Suppr超能文献

卵巢癌诊断的进展:从免疫测定到免疫传感器的历程。

Advances in ovarian cancer diagnosis: A journey from immunoassays to immunosensors.

作者信息

Sharma Shikha, Raghav Ragini, O'Kennedy Richard, Srivastava Sudha

机构信息

Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP 201307, India, India; Biomedical Diagnostics Institute (BDI), Dublin City University, Dublin 9, Ireland; School of Biotechnology, Dublin City University, Dublin 9, Ireland.

Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP 201307, India, India.

出版信息

Enzyme Microb Technol. 2016 Jul;89:15-30. doi: 10.1016/j.enzmictec.2016.03.002. Epub 2016 Mar 11.

Abstract

This review focuses on the technological advancements, challenges and trends in immunoassay technologies for ovarian cancer diagnosis. Emphasis is placed on the principles of the technologies, their merits and limitations and on the evolution from laboratory-based methods to point-of-care devices. While the current market is predominantly associated with clinical immunoassay kits, over the last decade a major thrust in development of immunosensors is evident due to their potential in point-of-care devices. Technological advancements in immunosensors, extending from labeled to label-free detection, with and without mediators, for enhancing proficiencies and reliability have been dealt with in detail. Aspects of the utilisation of nanomaterials and immobilization strategies for enhancing sensitivity and altering the detection range have also been addressed. Finally, we have discussed some distinct characteristics and limitations associated with the recently commericalised technologies used for quantitation of relevant ovarian cancer markers.

摘要

本综述聚焦于用于卵巢癌诊断的免疫分析技术的技术进步、挑战和趋势。重点在于这些技术的原理、优缺点以及从基于实验室的方法到即时检测设备的演变。虽然当前市场主要与临床免疫分析试剂盒相关,但在过去十年中,免疫传感器的开发有了重大进展,这是因为它们在即时检测设备方面具有潜力。免疫传感器的技术进步,从有标记检测到无标记检测,有无媒介物参与以提高熟练度和可靠性,都已详细论述。还探讨了利用纳米材料和固定策略来提高灵敏度和改变检测范围的相关方面。最后,我们讨论了与最近商业化的用于定量相关卵巢癌标志物的技术相关的一些独特特征和局限性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验