Suppr超能文献

临床获取的CT图像上六种人体腹部配准方法的评估

Evaluation of Six Registration Methods for the Human Abdomen on Clinically Acquired CT.

作者信息

Xu Zhoubing, Lee Christopher P, Heinrich Mattias P, Modat Marc, Rueckert Daniel, Ourselin Sebastien, Abramson Richard G, Landman Bennett A

出版信息

IEEE Trans Biomed Eng. 2016 Aug;63(8):1563-72. doi: 10.1109/TBME.2016.2574816. Epub 2016 Jun 1.

Abstract

OBJECTIVE

This work evaluates current 3-D image registration tools on clinically acquired abdominal computed tomography (CT) scans.

METHODS

Thirteen abdominal organs were manually labeled on a set of 100 CT images, and the 100 labeled images (i.e., atlases) were pairwise registered based on intensity information with six registration tools (FSL, ANTS-CC, ANTS-QUICK-MI, IRTK, NIFTYREG, and DEEDS). The Dice similarity coefficient (DSC), mean surface distance, and Hausdorff distance were calculated on the registered organs individually. Permutation tests and indifference-zone ranking were performed to examine the statistical and practical significance, respectively.

RESULTS

The results suggest that DEEDS yielded the best registration performance. However, due to the overall low DSC values, and substantial portion of low-performing outliers, great care must be taken when image registration is used for local interpretation of abdominal CT.

CONCLUSION

There is substantial room for improvement in image registration for abdominal CT.

SIGNIFICANCE

All data and source code are available so that innovations in registration can be directly compared with the current generation of tools without excessive duplication of effort.

摘要

目的

本研究评估当前用于临床采集的腹部计算机断层扫描(CT)图像的三维图像配准工具。

方法

在一组100张CT图像上手动标记了13个腹部器官,并使用六种配准工具(FSL、ANTS-CC、ANTS-QUICK-MI、IRTK、NIFTYREG和DEEDS)基于强度信息对这100张标记图像(即图谱)进行两两配准。分别计算配准后器官的骰子相似系数(DSC)、平均表面距离和豪斯多夫距离。分别进行排列检验和无差异区域排序以检验统计显著性和实际显著性。

结果

结果表明DEEDS产生了最佳的配准性能。然而,由于整体DSC值较低,且存在相当一部分性能较差的异常值,在将图像配准用于腹部CT的局部解读时必须格外小心。

结论

腹部CT图像配准仍有很大的改进空间。

意义

所有数据和源代码均可获取,以便配准方面的创新能够直接与当前一代工具进行比较,而无需进行过多的重复工作。

相似文献

1
Evaluation of Six Registration Methods for the Human Abdomen on Clinically Acquired CT.
IEEE Trans Biomed Eng. 2016 Aug;63(8):1563-72. doi: 10.1109/TBME.2016.2574816. Epub 2016 Jun 1.
3
An Efficient Pipeline for Abdomen Segmentation in CT Images.
J Digit Imaging. 2018 Apr;31(2):262-274. doi: 10.1007/s10278-017-0032-0.
5
Virtual navigator automatic registration technology in abdominal application.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:5570-4. doi: 10.1109/EMBC.2014.6944889.
6
Self-paced DenseNet with boundary constraint for automated multi-organ segmentation on abdominal CT images.
Phys Med Biol. 2020 Jul 13;65(13):135011. doi: 10.1088/1361-6560/ab9b57.
8
SPET/CT image co-registration in the abdomen with a simple and cost-effective tool.
Eur J Nucl Med Mol Imaging. 2003 Jan;30(1):32-9. doi: 10.1007/s00259-002-1013-0. Epub 2002 Oct 25.
10
Accurate CT∕MR vessel-guided nonrigid registration of largely deformed livers.
Med Phys. 2012 May;39(5):2463-77. doi: 10.1118/1.3701779.

引用本文的文献

1
CNN-Transformer gated fusion network for medical image super-resolution.
Sci Rep. 2025 May 2;15(1):15338. doi: 10.1038/s41598-025-00119-x.
2
Influence of early through late fusion on pancreas segmentation from imperfectly registered multimodal magnetic resonance imaging.
J Med Imaging (Bellingham). 2025 Mar;12(2):024008. doi: 10.1117/1.JMI.12.2.024008. Epub 2025 Apr 26.
3
Multi-contrast computed tomography atlas of healthy pancreas with dense displacement sampling registration.
J Med Imaging (Bellingham). 2025 Mar;12(2):024006. doi: 10.1117/1.JMI.12.2.024006. Epub 2025 Apr 17.
5
A survey on deep learning in medical image registration: New technologies, uncertainty, evaluation metrics, and beyond.
Med Image Anal. 2025 Feb;100:103385. doi: 10.1016/j.media.2024.103385. Epub 2024 Nov 10.
6
BucketAugment: Reinforced Domain Generalisation in Abdominal CT Segmentation.
IEEE Open J Eng Med Biol. 2024 May 7;5:353-361. doi: 10.1109/OJEMB.2024.3397623. eCollection 2024.
7
High-Resolution Swin Transformer for Automatic Medical Image Segmentation.
Sensors (Basel). 2023 Mar 24;23(7):3420. doi: 10.3390/s23073420.
8
Supervised Deep Generation of High-Resolution Arterial Phase Computed Tomography Kidney Substructure Atlas.
Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12032. doi: 10.1117/12.2608290. Epub 2022 Apr 4.
9
Learning-based three-dimensional registration with weak bounding box supervision.
J Med Imaging (Bellingham). 2022 Jul;9(4):044001. doi: 10.1117/1.JMI.9.4.044001. Epub 2022 Jul 14.
10
Multi-contrast computed tomography healthy kidney atlas.
Comput Biol Med. 2022 Jul;146:105555. doi: 10.1016/j.compbiomed.2022.105555. Epub 2022 Apr 26.

本文引用的文献

1
Multi-atlas segmentation of biomedical images: A survey.
Med Image Anal. 2015 Aug;24(1):205-219. doi: 10.1016/j.media.2015.06.012. Epub 2015 Jul 6.
2
Efficient multi-atlas abdominal segmentation on clinically acquired CT with SIMPLE context learning.
Med Image Anal. 2015 Aug;24(1):18-27. doi: 10.1016/j.media.2015.05.009. Epub 2015 May 21.
4
SIMPLE is a good idea (and better with context learning).
Med Image Comput Comput Assist Interv. 2014;17(Pt 1):364-71. doi: 10.1007/978-3-319-10404-1_46.
5
Abdominal multi-organ CT segmentation using organ correlation graph and prediction-based shape and location priors.
Med Image Comput Comput Assist Interv. 2013;16(Pt 3):275-82. doi: 10.1007/978-3-642-40760-4_35.
6
Towards realtime multimodal fusion for image-guided interventions using self-similarities.
Med Image Comput Comput Assist Interv. 2013;16(Pt 1):187-94. doi: 10.1007/978-3-642-40811-3_24.
7
Automated abdominal multi-organ segmentation with subject-specific atlas generation.
IEEE Trans Med Imaging. 2013 Sep;32(9):1723-30. doi: 10.1109/TMI.2013.2265805. Epub 2013 Jun 3.
9
MRF-based deformable registration and ventilation estimation of lung CT.
IEEE Trans Med Imaging. 2013 Jul;32(7):1239-48. doi: 10.1109/TMI.2013.2246577. Epub 2013 Feb 26.
10
Regression forests for efficient anatomy detection and localization in computed tomography scans.
Med Image Anal. 2013 Dec;17(8):1293-303. doi: 10.1016/j.media.2013.01.001. Epub 2013 Jan 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验