Suppr超能文献

你的腕部设备识别日常活动和检测跌倒的准确性如何?

How Accurately Can Your Wrist Device Recognize Daily Activities and Detect Falls?

作者信息

Gjoreski Martin, Gjoreski Hristijan, Luštrek Mitja, Gams Matjaž

机构信息

Department of Intelligent Systems, Jožef Stefan International Postgraduate School, Jožef Stefan Institute, Ljubljana 1000, Slovenia.

出版信息

Sensors (Basel). 2016 Jun 1;16(6):800. doi: 10.3390/s16060800.

Abstract

Although wearable accelerometers can successfully recognize activities and detect falls, their adoption in real life is low because users do not want to wear additional devices. A possible solution is an accelerometer inside a wrist device/smartwatch. However, wrist placement might perform poorly in terms of accuracy due to frequent random movements of the hand. In this paper we perform a thorough, large-scale evaluation of methods for activity recognition and fall detection on four datasets. On the first two we showed that the left wrist performs better compared to the dominant right one, and also better compared to the elbow and the chest, but worse compared to the ankle, knee and belt. On the third (Opportunity) dataset, our method outperformed the related work, indicating that our feature-preprocessing creates better input data. And finally, on a real-life unlabeled dataset the recognized activities captured the subject's daily rhythm and activities. Our fall-detection method detected all of the fast falls and minimized the false positives, achieving 85% accuracy on the first dataset. Because the other datasets did not contain fall events, only false positives were evaluated, resulting in 9 for the second, 1 for the third and 15 for the real-life dataset (57 days data).

摘要

尽管可穿戴式加速度计能够成功识别活动并检测跌倒,但由于用户不想佩戴额外的设备,它们在现实生活中的采用率较低。一种可能的解决方案是在腕部设备/智能手表中内置加速度计。然而,由于手部频繁的随机运动,腕部放置在准确性方面可能表现不佳。在本文中,我们对四个数据集上的活动识别和跌倒检测方法进行了全面、大规模的评估。在前两个数据集上,我们表明,与占主导地位的右手腕相比,左手腕的表现更好,与肘部和胸部相比也更好,但与脚踝、膝盖和腰部相比则更差。在第三个(机遇)数据集上,我们的方法优于相关工作,表明我们的特征预处理创建了更好的输入数据。最后,在一个现实生活中的未标记数据集上,识别出的活动捕捉到了受试者的日常节奏和活动。我们的跌倒检测方法检测到了所有快速跌倒,并将误报降至最低,在第一个数据集上达到了85%的准确率。由于其他数据集不包含跌倒事件,因此只评估了误报,第二个数据集为9次,第三个数据集为1次,现实生活数据集(57天数据)为15次。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/603c/4934226/8d6729620c13/sensors-16-00800-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验