Suppr超能文献

微流控技术的翻译:细胞分离技术及其商业化障碍。

Translating microfluidics: Cell separation technologies and their barriers to commercialization.

作者信息

Shields C Wyatt, Ohiri Korine A, Szott Luisa M, López Gabriel P

机构信息

NSF Research Triangle Materials Research Science and Engineering Center, Duke University, Durham, North Carolina, 27708.

Department of Biomedical Engineering, Duke University, Durham, North Carolina, 27708.

出版信息

Cytometry B Clin Cytom. 2017 Mar;92(2):115-125. doi: 10.1002/cyto.b.21388. Epub 2016 Jul 5.

Abstract

Advances in microfluidic cell sorting have revolutionized the ways in which cell-containing fluids are processed, now providing performances comparable to, or exceeding, traditional systems, but in a vastly miniaturized format. These technologies exploit a wide variety of physical phenomena to manipulate cells and fluid flow, such as magnetic traps, sound waves and flow-altering micropatterns, and they can evaluate single cells by immobilizing them onto surfaces for chemotherapeutic assessment, encapsulate cells into picoliter droplets for toxicity screenings and examine the interactions between pairs of cells in response to new, experimental drugs. However, despite the massive surge of innovation in these high-performance lab-on-a-chip devices, few have undergone successful commercialization, and no device has been translated to a widely distributed clinical commodity to date. Persistent challenges such as an increasingly saturated patent landscape as well as complex user interfaces are among several factors that may contribute to their slowed progress. In this article, we identify several of the leading microfluidic technologies for sorting cells that are poised for clinical translation; we examine the principal barriers preventing their routine clinical use; finally, we provide a prospectus to elucidate the key criteria that must be met to overcome those barriers. Once established, these tools may soon transform how clinical labs study various ailments and diseases by separating cells for downstream sequencing and enabling other forms of advanced cellular or sub-cellular analysis. © 2016 International Clinical Cytometry Society.

摘要

微流控细胞分选技术的进步彻底改变了含细胞流体的处理方式,如今其性能可与传统系统相媲美甚至超越传统系统,且具备大幅微型化的特点。这些技术利用多种物理现象来操控细胞和流体流动,如磁阱、声波和改变流动的微图案,它们能通过将单细胞固定在表面进行化疗评估来对其进行评估,将细胞封装到皮升液滴中进行毒性筛查,并研究成对细胞在新型实验药物作用下的相互作用。然而,尽管这些高性能芯片实验室设备创新大量涌现,但很少有设备成功实现商业化,迄今为止也没有一种设备转化为广泛应用的临床产品。诸如专利格局日益饱和以及用户界面复杂等持续存在的挑战是导致其进展缓慢的几个因素。在本文中,我们确定了几种有望实现临床转化的领先细胞分选微流控技术;我们研究了阻碍其常规临床应用的主要障碍;最后,我们提供了一份计划书,阐明克服这些障碍必须满足的关键标准。一旦确立,这些工具可能很快会改变临床实验室研究各种疾病的方式,通过分离细胞进行下游测序并实现其他形式的先进细胞或亚细胞分析。 © 2016国际临床细胞计量学会

相似文献

1
Translating microfluidics: Cell separation technologies and their barriers to commercialization.
Cytometry B Clin Cytom. 2017 Mar;92(2):115-125. doi: 10.1002/cyto.b.21388. Epub 2016 Jul 5.
3
Developments in label-free microfluidic methods for single-cell analysis and sorting.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019 Jan;11(1):e1529. doi: 10.1002/wnan.1529. Epub 2018 Apr 24.
4
Spark-generated microbubble cell sorter for microfluidic flow cytometry.
Cytometry A. 2018 Feb;93(2):222-231. doi: 10.1002/cyto.a.23296. Epub 2018 Jan 18.
5
Microfluidic chips for cell sorting.
Front Biosci. 2008 Jan 1;13:2464-83. doi: 10.2741/2859.
6
Numerical and experimental evaluation of microfluidic sorting devices.
Biotechnol Prog. 2008 Jul-Aug;24(4):981-91. doi: 10.1002/btpr.7.
7
Commercialization of microfluidic devices.
Trends Biotechnol. 2014 Jul;32(7):347-50. doi: 10.1016/j.tibtech.2014.04.010.
8
Overcoming technological barriers in microfluidics: Leakage testing.
Front Bioeng Biotechnol. 2022 Sep 7;10:958582. doi: 10.3389/fbioe.2022.958582. eCollection 2022.
9
Adhesion based detection, sorting and enrichment of cells in microfluidic Lab-on-Chip devices.
Lab Chip. 2010 Nov 21;10(22):3043-53. doi: 10.1039/c0lc00130a. Epub 2010 Sep 29.
10
Microfluidic blood cell sorting: now and beyond.
Small. 2014 May 14;10(9):1687-703. doi: 10.1002/smll.201302907. Epub 2014 Feb 10.

引用本文的文献

1
Research on Simulation Optimization of MEMS Microfluidic Structures at the Microscale.
Micromachines (Basel). 2025 Jun 11;16(6):695. doi: 10.3390/mi16060695.
2
Advances and Applications of Micro- and Mesofluidic Systems.
ACS Omega. 2025 Mar 25;10(13):12817-12836. doi: 10.1021/acsomega.4c10999. eCollection 2025 Apr 8.
3
Essential Fluidics for a Flow Cytometer.
Curr Protoc. 2024 Oct;4(10):e1124. doi: 10.1002/cpz1.1124.
4
Capillary wave tweezer.
Sci Rep. 2024 May 30;14(1):12448. doi: 10.1038/s41598-024-63154-0.
5
A Systematic Analysis of Recent Technology Trends of Microfluidic Medical Devices in the United States.
Micromachines (Basel). 2023 Jun 24;14(7):1293. doi: 10.3390/mi14071293.
6
Magnetophoretic circuits: A review of device designs and implementation for precise single-cell manipulation.
Anal Chim Acta. 2023 Sep 1;1272:341425. doi: 10.1016/j.aca.2023.341425. Epub 2023 May 31.
7
Disposable paper-based microfluidics for fertility testing.
iScience. 2022 Aug 18;25(9):104986. doi: 10.1016/j.isci.2022.104986. eCollection 2022 Sep 16.
8
Microfluidics for Neuronal Cell and Circuit Engineering.
Chem Rev. 2022 Sep 28;122(18):14842-14880. doi: 10.1021/acs.chemrev.2c00212. Epub 2022 Sep 7.
9
Signal-Based Methods in Dielectrophoresis for Cell and Particle Separation.
Biosensors (Basel). 2022 Jul 11;12(7):510. doi: 10.3390/bios12070510.

本文引用的文献

2
Continuous Flow Deformability-Based Separation of Circulating Tumor Cells Using Microfluidic Ratchets.
Small. 2016 Apr 13;12(14):1909-19. doi: 10.1002/smll.201503639. Epub 2016 Feb 24.
3
Experimental and numerical studies on standing surface acoustic wave microfluidics.
Lab Chip. 2016 Feb 7;16(3):515-24. doi: 10.1039/c5lc00707k.
4
Microfluidics: The Challenge Is to Bridge the Gap Instead of Looking for a 'Killer App'.
Trends Biotechnol. 2016 Jan;34(1):1-3. doi: 10.1016/j.tibtech.2015.10.003. Epub 2015 Nov 18.
5
HISTORY OF SCIENCE. Flow cytometry strikes gold.
Science. 2015 Nov 13;350(6262):739-40. doi: 10.1126/science.aad6770.
6
Characterizing the Switching Thresholds of Magnetophoretic Transistors.
Adv Mater. 2015 Oct 28;27(40):6176-80. doi: 10.1002/adma.201502352. Epub 2015 Sep 9.
7
Acoustofluidic Fluorescence Activated Cell Sorter.
Anal Chem. 2015 Dec 15;87(24):12051-8. doi: 10.1021/acs.analchem.5b02398. Epub 2015 Sep 2.
8
A high-throughput acoustic cell sorter.
Lab Chip. 2015 Oct 7;15(19):3870-3879. doi: 10.1039/c5lc00706b.
9
Entrepreneurship.
Lab Chip. 2015;15(18):3638-60. doi: 10.1039/c5lc00577a.
10
The Poisson distribution and beyond: methods for microfluidic droplet production and single cell encapsulation.
Lab Chip. 2015 Sep 7;15(17):3439-59. doi: 10.1039/c5lc00614g. Epub 2015 Jul 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验