Suppr超能文献

用于确定生物结构的压缩感知电子断层扫描技术

Compressed Sensing Electron Tomography for Determining Biological Structure.

作者信息

Guay Matthew D, Czaja Wojciech, Aronova Maria A, Leapman Richard D

机构信息

University of Maryland, Department of Applied Mathematics and Scientific Computation, College Park, MD 20742, USA.

University of Maryland, Department of Mathematics, College Park, MD 20742, USA.

出版信息

Sci Rep. 2016 Jun 13;6:27614. doi: 10.1038/srep27614.

Abstract

There has been growing interest in applying compressed sensing (CS) theory and practice to reconstruct 3D volumes at the nanoscale from electron tomography datasets of inorganic materials, based on known sparsity in the structure of interest. Here we explore the application of CS for visualizing the 3D structure of biological specimens from tomographic tilt series acquired in the scanning transmission electron microscope (STEM). CS-ET reconstructions match or outperform commonly used alternative methods in full and undersampled tomogram recovery, but with less significant performance gains than observed for the imaging of inorganic materials. We propose that this disparity stems from the increased structural complexity of biological systems, as supported by theoretical CS sampling considerations and numerical results in simulated phantom datasets. A detailed analysis of the efficacy of CS-ET for undersampled recovery is therefore complicated by the structure of the object being imaged. The numerical nonlinear decoding process of CS shares strong connections with popular regularized least-squares methods, and the use of such numerical recovery techniques for mitigating artifacts and denoising in reconstructions of fully sampled datasets remains advantageous. This article provides a link to the software that has been developed for CS-ET reconstruction of electron tomographic data sets.

摘要

基于感兴趣结构中已知的稀疏性,将压缩感知(CS)理论与实践应用于从无机材料的电子断层扫描数据集中重建纳米级三维体积的兴趣与日俱增。在此,我们探索了CS在从扫描透射电子显微镜(STEM)中获取的断层扫描倾斜序列可视化生物样本三维结构方面的应用。在完整和欠采样断层图像恢复方面,CS-ET重建与常用的替代方法相当或更优,但与无机材料成像相比,性能提升不那么显著。我们认为这种差异源于生物系统结构复杂性的增加,这得到了理论CS采样考量以及模拟体模数据集中数值结果的支持。因此,由于被成像物体的结构,对CS-ET在欠采样恢复方面的功效进行详细分析变得复杂。CS的数值非线性解码过程与流行的正则化最小二乘法有密切联系,并且在完全采样数据集的重建中使用此类数值恢复技术来减轻伪影和去噪仍然具有优势。本文提供了为电子断层扫描数据集的CS-ET重建所开发软件的链接。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f18f/4904377/f56f37988456/srep27614-f1.jpg

相似文献

1
Compressed Sensing Electron Tomography for Determining Biological Structure.
Sci Rep. 2016 Jun 13;6:27614. doi: 10.1038/srep27614.
2
Dynamic compressed sensing for real-time tomographic reconstruction.
Ultramicroscopy. 2020 Dec;219:113122. doi: 10.1016/j.ultramic.2020.113122. Epub 2020 Oct 9.
3
Improved compressed sensing reconstruction for F magnetic resonance imaging.
MAGMA. 2019 Feb;32(1):63-77. doi: 10.1007/s10334-018-0729-1. Epub 2019 Jan 2.
4
Phase-regularized and displacement-regularized compressed sensing for fast magnetic resonance elastography.
NMR Biomed. 2023 Jul;36(7):e4899. doi: 10.1002/nbm.4899. Epub 2023 Feb 1.
5
ICON: 3D reconstruction with 'missing-information' restoration in biological electron tomography.
J Struct Biol. 2016 Jul;195(1):100-12. doi: 10.1016/j.jsb.2016.04.004. Epub 2016 Apr 11.
6
Compressed sensing of spatial electron paramagnetic resonance imaging.
Magn Reson Med. 2014 Sep;72(3):893-901. doi: 10.1002/mrm.24966. Epub 2013 Oct 7.
7
Removing high contrast artifacts via digital inpainting in cryo-electron tomography: an application of compressed sensing.
J Struct Biol. 2012 May;178(2):108-20. doi: 10.1016/j.jsb.2012.01.003. Epub 2012 Jan 10.
8
Compressed sensing for reduction of noise and artefacts in direct PET image reconstruction.
Z Med Phys. 2014 Mar;24(1):16-26. doi: 10.1016/j.zemedi.2013.05.003. Epub 2013 Jun 10.
9
Compressed sensing effects on quantitative analysis of undersampled human brain sodium MRI.
Magn Reson Med. 2020 Mar;83(3):1025-1033. doi: 10.1002/mrm.27993. Epub 2019 Sep 10.

引用本文的文献

1
Charting the molecular landscape of the cell.
Structure. 2023 Nov 2;31(11):1297-1305. doi: 10.1016/j.str.2023.08.015. Epub 2023 Sep 11.
2
Automatic Differentiation for Inverse Problems in X-ray Imaging and Microscopy.
Life (Basel). 2023 Feb 23;13(3):629. doi: 10.3390/life13030629.
3
Compressed sensing for electron cryotomography and high-resolution subtomogram averaging of biological specimens.
Structure. 2022 Mar 3;30(3):408-417.e4. doi: 10.1016/j.str.2021.12.010. Epub 2022 Jan 19.
4
Novel nonlinear reconstruction method with grey-level quantisation units for electron tomography.
Sci Rep. 2020 Nov 19;10(1):20146. doi: 10.1038/s41598-020-77156-1.
6
MBIR: A cryo-ET 3D reconstruction method that effectively minimizes missing wedge artifacts and restores missing information.
J Struct Biol. 2019 May 1;206(2):183-192. doi: 10.1016/j.jsb.2019.03.002. Epub 2019 Mar 11.
8
A Survey of the Use of Iterative Reconstruction Algorithms in Electron Microscopy.
Biomed Res Int. 2017;2017:6482567. doi: 10.1155/2017/6482567. Epub 2017 Sep 17.

本文引用的文献

1
Solving 2D Fredholm Integral from Incomplete Measurements Using Compressive Sensing.
SIAM J Imaging Sci. 2014;7(3):1775-1798. doi: 10.1137/130932168. Epub 2014 Sep 17.
3
Efficient 2D MRI relaxometry using compressed sensing.
J Magn Reson. 2015 Jun;255:88-99. doi: 10.1016/j.jmr.2015.04.002. Epub 2015 Apr 11.
4
Compressed sensing electron tomography.
Ultramicroscopy. 2013 Aug;131:70-91. doi: 10.1016/j.ultramic.2013.03.019. Epub 2013 Apr 8.
5
Advanced reconstruction algorithms for electron tomography: from comparison to combination.
Ultramicroscopy. 2013 Apr;127:40-7. doi: 10.1016/j.ultramic.2012.07.003. Epub 2012 Aug 2.
6
Shape-based regularization of electron tomographic reconstruction.
IEEE Trans Med Imaging. 2012 Dec;31(12):2241-52. doi: 10.1109/TMI.2012.2214229. Epub 2012 Aug 20.
7
Low-dose X-ray CT reconstruction via dictionary learning.
IEEE Trans Med Imaging. 2012 Sep;31(9):1682-97. doi: 10.1109/TMI.2012.2195669. Epub 2012 Apr 20.
8
Removing high contrast artifacts via digital inpainting in cryo-electron tomography: an application of compressed sensing.
J Struct Biol. 2012 May;178(2):108-20. doi: 10.1016/j.jsb.2012.01.003. Epub 2012 Jan 10.
10
Deletion of Ia-2 and/or Ia-2β in mice decreases insulin secretion by reducing the number of dense core vesicles.
Diabetologia. 2011 Sep;54(9):2347-57. doi: 10.1007/s00125-011-2221-6. Epub 2011 Jul 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验