Solomon Edward I
Stanford University , Stanford, California 94305, United States.
Inorg Chem. 2016 Jul 5;55(13):6364-75. doi: 10.1021/acs.inorgchem.6b01034. Epub 2016 Jun 14.
Oxygen intermediates in copper enzymes exhibit unique spectroscopic features that reflect novel geometric and electronic structures that are key to reactivity. This perspective will describe: (1) the bonding origin of the unique spectroscopic features of the coupled binuclear copper enzymes and how this overcomes the spin forbiddenness of O2 binding and activates monooxygenase activity, (2) how the difference in exchange coupling in the non-coupled binuclear Cu enzymes controls the reaction mechanism, and (3) how the trinuclear Cu cluster present in the multicopper oxidases leads to a major structure/function difference in enabling the irreversible reductive cleavage of the O-O bond with little overpotential and generating a fully oxidized intermediate, different from the resting enzyme studied by crystallography, that is key in enabling fast PCET in the reductive half of the catalytic cycle.
铜酶中的氧中间体表现出独特的光谱特征,这些特征反映了对反应性至关重要的新颖几何和电子结构。本文将描述:(1)偶联双核铜酶独特光谱特征的键合起源,以及这如何克服O2结合的自旋禁阻并激活单加氧酶活性;(2)非偶联双核铜酶中交换耦合的差异如何控制反应机制;(3)多铜氧化酶中存在的三核铜簇如何导致主要的结构/功能差异,从而能够以很小的过电位实现O-O键的不可逆还原裂解,并产生一个完全氧化的中间体,这与通过晶体学研究的静止酶不同,是催化循环还原半程中实现快速质子耦合电子转移的关键。