Suppr超能文献

用于重症监护病房的基于人工智能的人工胰腺的计算机模拟测试。

In Silico Testing of an Artificial-Intelligence-Based Artificial Pancreas Designed for Use in the Intensive Care Unit Setting.

作者信息

DeJournett Leon, DeJournett Jeremy

机构信息

Ideal Medical Technologies Inc, Asheville, NC, USA

Ideal Medical Technologies Inc, Asheville, NC, USA.

出版信息

J Diabetes Sci Technol. 2016 Nov 1;10(6):1360-1371. doi: 10.1177/1932296816653967. Print 2016 Nov.

Abstract

BACKGROUND

Effective glucose control in the intensive care unit (ICU) setting has the potential to decrease morbidity and mortality rates which should in turn lead to decreased health care expenditures. Current ICU-based glucose controllers are mathematically derived, and tend to be based on proportional integral derivative (PID) or model predictive control (MPC). Artificial intelligence (AI)-based closed loop glucose controllers may have the ability to achieve control that improves on the results achieved by either PID or MPC controllers.

METHOD

We conducted an in silico analysis of an AI-based glucose controller designed for use in the ICU setting. This controller was tested using a mathematical model of the ICU patient's glucose-insulin system. A total of 126 000 unique 5-day simulations were carried out, resulting in 107 million glucose values for analysis.

RESULTS

For the 7 control ranges tested, with a sensor error of ±10%, the following average results were achieved: (1) time in control range, 94.2%, (2) time in range 70-140 mg/dl, 97.8%, (3) time in hyperglycemic range (>140 mg/dl), 2.1%, and (4) time in hypoglycemic range (<70 mg/dl), 0.09%. In addition, the average coefficient of variation (CV) was 11.1%.

CONCLUSIONS

This in silico study of an AI-based closed loop glucose controller shows that it may be able to improve on the results achieved by currently existing ICU-based PID/MPC controllers. If these results are confirmed in clinical testing, this AI-based controller could be used to create an artificial pancreas system for use in the ICU setting.

摘要

背景

在重症监护病房(ICU)环境中有效控制血糖有可能降低发病率和死亡率,进而降低医疗保健支出。当前基于ICU的血糖控制器是通过数学推导得出的,往往基于比例积分微分(PID)或模型预测控制(MPC)。基于人工智能(AI)的闭环血糖控制器可能有能力实现比PID或MPC控制器更好的控制效果。

方法

我们对一种设计用于ICU环境的基于AI的血糖控制器进行了计算机模拟分析。该控制器使用ICU患者血糖 - 胰岛素系统的数学模型进行测试。总共进行了126000次独特的5天模拟,产生了1.07亿个血糖值用于分析。

结果

对于测试的7个控制范围,传感器误差为±10%时,取得了以下平均结果:(1)处于控制范围内的时间为94.2%,(2)处于70 - 140 mg/dl范围内的时间为97.8%,(3)处于高血糖范围(>140 mg/dl)的时间为2.1%,以及(4)处于低血糖范围(<70 mg/dl)的时间为0.09%。此外,平均变异系数(CV)为11.1%。

结论

这项对基于AI的闭环血糖控制器的计算机模拟研究表明,它可能能够改善目前基于ICU的PID/MPC控制器所取得的结果。如果这些结果在临床试验中得到证实,这种基于AI的控制器可用于创建一种用于ICU环境的人工胰腺系统。

相似文献

1
In Silico Testing of an Artificial-Intelligence-Based Artificial Pancreas Designed for Use in the Intensive Care Unit Setting.
J Diabetes Sci Technol. 2016 Nov 1;10(6):1360-1371. doi: 10.1177/1932296816653967. Print 2016 Nov.
2
Comparative Simulation Study of Glucose Control Methods Designed for Use in the Intensive Care Unit Setting via a Novel Controller Scoring Metric.
J Diabetes Sci Technol. 2017 Nov;11(6):1207-1217. doi: 10.1177/1932296817711297. Epub 2017 Jun 22.
4
A closed-loop artificial pancreas based on risk management.
J Diabetes Sci Technol. 2011 Mar 1;5(2):368-79. doi: 10.1177/193229681100500226.
6
Postprandial fuzzy adaptive strategy for a hybrid proportional derivative controller for the artificial pancreas.
Med Biol Eng Comput. 2018 Nov;56(11):1973-1986. doi: 10.1007/s11517-018-1832-1. Epub 2018 May 3.
7
Use of a "fuzzy logic" controller in a closed-loop artificial pancreas.
Diabetes Technol Ther. 2013 Aug;15(8):628-33. doi: 10.1089/dia.2013.0036. Epub 2013 Jul 5.
9
A computational proof of concept of a machine-intelligent artificial pancreas using Lyapunov stability and differential game theory.
J Diabetes Sci Technol. 2014 Jul;8(4):791-806. doi: 10.1177/1932296814536271. Epub 2014 Jul 4.
10
Continuous glucose monitoring considerations for the development of a closed-loop artificial pancreas system.
J Diabetes Sci Technol. 2011 Nov 1;5(6):1327-36. doi: 10.1177/193229681100500603.

引用本文的文献

1
Artificial Intelligence-Enhanced Neurocritical Care for Traumatic Brain Injury : Past, Present and Future.
J Korean Neurosurg Soc. 2024 Sep;67(5):493-509. doi: 10.3340/jkns.2023.0195. Epub 2024 Jan 8.
2
What, why and how to monitor blood glucose in critically ill patients.
World J Diabetes. 2023 May 15;14(5):528-538. doi: 10.4239/wjd.v14.i5.528.
5
Distributed Intelligent Learning and Decision Model Based on Logic Predictive Control.
Comput Intell Neurosci. 2022 Aug 30;2022:6431776. doi: 10.1155/2022/6431776. eCollection 2022.
6
Predictive modeling in neurocritical care using causal artificial intelligence.
World J Crit Care Med. 2021 Jul 9;10(4):112-119. doi: 10.5492/wjccm.v10.i4.112.
7
Automated Insulin Delivery Systems: Today, Tomorrow and User Requirements.
J Diabetes Sci Technol. 2021 Nov;15(6):1252-1257. doi: 10.1177/19322968211029937. Epub 2021 Jul 22.
8
Intelligent automated drug administration and therapy: future of healthcare.
Drug Deliv Transl Res. 2021 Oct;11(5):1878-1902. doi: 10.1007/s13346-020-00876-4. Epub 2021 Jan 14.
9
Managing hyperglycemia during the COVID-19 pandemic: Improving outcomes using new technologies in intensive care.
SAGE Open Med. 2020 Nov 19;8:2050312120974174. doi: 10.1177/2050312120974174. eCollection 2020.
10
Transforming Diabetes Care Through Artificial Intelligence: The Future Is Here.
Popul Health Manag. 2019 Jun;22(3):229-242. doi: 10.1089/pop.2018.0129. Epub 2018 Oct 2.

本文引用的文献

1
The Development of a Continuous Intravascular Glucose Monitoring Sensor.
J Diabetes Sci Technol. 2015 Jul;9(4):751-61. doi: 10.1177/1932296815587937. Epub 2015 Jun 1.
3
Association of time in blood glucose range with outcomes following cardiac surgery.
BMC Anesthesiol. 2015 Jan 26;15(1):14. doi: 10.1186/1471-2253-15-14. eCollection 2015.
4
6
The UVA/PADOVA Type 1 Diabetes Simulator: New Features.
J Diabetes Sci Technol. 2014 Jan;8(1):26-34. doi: 10.1177/1932296813514502. Epub 2014 Jan 1.
7
Intensive versus intermediate glucose control in surgical intensive care unit patients.
Diabetes Care. 2014 Jun;37(6):1516-24. doi: 10.2337/dc13-1771. Epub 2014 Mar 12.
8
Modeling the glucose sensor error.
IEEE Trans Biomed Eng. 2014 Mar;61(3):620-9. doi: 10.1109/TBME.2013.2284023. Epub 2013 Sep 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验