DeJournett Leon, DeJournett Jeremy
Ideal Medical Technologies Inc, Asheville, NC, USA
Ideal Medical Technologies Inc, Asheville, NC, USA.
J Diabetes Sci Technol. 2016 Nov 1;10(6):1360-1371. doi: 10.1177/1932296816653967. Print 2016 Nov.
Effective glucose control in the intensive care unit (ICU) setting has the potential to decrease morbidity and mortality rates which should in turn lead to decreased health care expenditures. Current ICU-based glucose controllers are mathematically derived, and tend to be based on proportional integral derivative (PID) or model predictive control (MPC). Artificial intelligence (AI)-based closed loop glucose controllers may have the ability to achieve control that improves on the results achieved by either PID or MPC controllers.
We conducted an in silico analysis of an AI-based glucose controller designed for use in the ICU setting. This controller was tested using a mathematical model of the ICU patient's glucose-insulin system. A total of 126 000 unique 5-day simulations were carried out, resulting in 107 million glucose values for analysis.
For the 7 control ranges tested, with a sensor error of ±10%, the following average results were achieved: (1) time in control range, 94.2%, (2) time in range 70-140 mg/dl, 97.8%, (3) time in hyperglycemic range (>140 mg/dl), 2.1%, and (4) time in hypoglycemic range (<70 mg/dl), 0.09%. In addition, the average coefficient of variation (CV) was 11.1%.
This in silico study of an AI-based closed loop glucose controller shows that it may be able to improve on the results achieved by currently existing ICU-based PID/MPC controllers. If these results are confirmed in clinical testing, this AI-based controller could be used to create an artificial pancreas system for use in the ICU setting.
在重症监护病房(ICU)环境中有效控制血糖有可能降低发病率和死亡率,进而降低医疗保健支出。当前基于ICU的血糖控制器是通过数学推导得出的,往往基于比例积分微分(PID)或模型预测控制(MPC)。基于人工智能(AI)的闭环血糖控制器可能有能力实现比PID或MPC控制器更好的控制效果。
我们对一种设计用于ICU环境的基于AI的血糖控制器进行了计算机模拟分析。该控制器使用ICU患者血糖 - 胰岛素系统的数学模型进行测试。总共进行了126000次独特的5天模拟,产生了1.07亿个血糖值用于分析。
对于测试的7个控制范围,传感器误差为±10%时,取得了以下平均结果:(1)处于控制范围内的时间为94.2%,(2)处于70 - 140 mg/dl范围内的时间为97.8%,(3)处于高血糖范围(>140 mg/dl)的时间为2.1%,以及(4)处于低血糖范围(<70 mg/dl)的时间为0.09%。此外,平均变异系数(CV)为11.1%。
这项对基于AI的闭环血糖控制器的计算机模拟研究表明,它可能能够改善目前基于ICU的PID/MPC控制器所取得的结果。如果这些结果在临床试验中得到证实,这种基于AI的控制器可用于创建一种用于ICU环境的人工胰腺系统。