Suppr超能文献

在线集体行为中的影响与观点演变建模

Modelling Influence and Opinion Evolution in Online Collective Behaviour.

作者信息

Vande Kerckhove Corentin, Martin Samuel, Gend Pascal, Rentfrow Peter J, Hendrickx Julien M, Blondel Vincent D

机构信息

Large graphs and networks group, Université catholique de Louvain, Avenue Georges Lemaitre, 4 B-1348 Louvain-la-Neuve, Belgium.

Université de Lorraine, CRAN, UMR 7039 and CNRS, CRAN, UMR 7039, 2 Avenue de la Forêt de Haye, Vandoeuvre-les-Nancy, France.

出版信息

PLoS One. 2016 Jun 23;11(6):e0157685. doi: 10.1371/journal.pone.0157685. eCollection 2016.

Abstract

Opinion evolution and judgment revision are mediated through social influence. Based on a large crowdsourced in vitro experiment (n = 861), it is shown how a consensus model can be used to predict opinion evolution in online collective behaviour. It is the first time the predictive power of a quantitative model of opinion dynamics is tested against a real dataset. Unlike previous research on the topic, the model was validated on data which did not serve to calibrate it. This avoids to favor more complex models over more simple ones and prevents overfitting. The model is parametrized by the influenceability of each individual, a factor representing to what extent individuals incorporate external judgments. The prediction accuracy depends on prior knowledge on the participants' past behaviour. Several situations reflecting data availability are compared. When the data is scarce, the data from previous participants is used to predict how a new participant will behave. Judgment revision includes unpredictable variations which limit the potential for prediction. A first measure of unpredictability is proposed. The measure is based on a specific control experiment. More than two thirds of the prediction errors are found to occur due to unpredictability of the human judgment revision process rather than to model imperfection.

摘要

观点演变和判断修正通过社会影响来介导。基于一项大规模众包体外实验(n = 861),展示了如何使用共识模型来预测在线集体行为中的观点演变。这是首次针对真实数据集测试观点动态定量模型的预测能力。与以往关于该主题的研究不同,该模型是在未用于校准的数据上进行验证的。这避免了青睐更复杂的模型而非更简单的模型,并防止了过度拟合。该模型由每个个体的可影响性参数化,这是一个代表个体在多大程度上纳入外部判断的因素。预测准确性取决于对参与者过去行为的先验知识。比较了几种反映数据可用性的情况。当数据稀缺时,先前参与者的数据用于预测新参与者的行为。判断修正包括不可预测的变化,这限制了预测的潜力。提出了一种不可预测性的初步度量。该度量基于一个特定的对照实验。发现超过三分之二的预测误差是由于人类判断修正过程的不可预测性而非模型缺陷导致的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95d9/4918933/597e967a10c2/pone.0157685.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验