4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
Institute for Applied Optics (ITO) and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart, Germany.
Nat Commun. 2016 Jun 24;7:11763. doi: 10.1038/ncomms11763.
Micro-optics are widely used in numerous applications, such as beam shaping, collimation, focusing and imaging. We use femtosecond 3D printing to manufacture free-form micro-optical elements. Our method gives sub-micrometre accuracy so that direct manufacturing even on single-mode fibres is possible. We demonstrate the potential of our method by writing different collimation optics, toric lenses, free-form surfaces with polynomials of up to 10th order for intensity beam shaping, as well as chiral photonic crystals for circular polarization filtering, all aligned onto the core of the single-mode fibres. We determine the accuracy of our optics by analysing the output patterns as well as interferometrically characterizing the surfaces. We find excellent agreement with numerical calculations. 3D printing of microoptics can achieve sufficient performance that will allow for rapid prototyping and production of beam-shaping and imaging devices.
微光学在许多应用中得到了广泛应用,如光束整形、准直、聚焦和成像。我们使用飞秒 3D 打印来制造自由曲面微光学元件。我们的方法精度达到亚微米级,因此即使是单模光纤也可以直接制造。我们通过在单模光纤的芯上写入不同的准直光学元件、双折射透镜、高达 10 阶多项式的自由曲面用于强度光束整形,以及用于圆偏振滤波的手性光子晶体,展示了我们方法的潜力。我们通过分析输出图案和干涉测量表面特征来确定光学元件的精度。我们发现与数值计算结果吻合得非常好。微光学的 3D 打印可以达到足够的性能,从而允许快速原型制作和光束整形和成像设备的生产。