Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.
Nat Nanotechnol. 2016 Sep;11(9):776-82. doi: 10.1038/nnano.2016.96. Epub 2016 Jun 27.
Real-time mapping and manipulation of electrophysiology in three-dimensional (3D) tissues could have important impacts on fundamental scientific and clinical studies, yet realization is hampered by a lack of effective methods. Here we introduce tissue-scaffold-mimicking 3D nanoelectronic arrays consisting of 64 addressable devices with subcellular dimensions and a submillisecond temporal resolution. Real-time extracellular action potential (AP) recordings reveal quantitative maps of AP propagation in 3D cardiac tissues, enable in situ tracing of the evolving topology of 3D conducting pathways in developing cardiac tissues and probe the dynamics of AP conduction characteristics in a transient arrhythmia disease model and subsequent tissue self-adaptation. We further demonstrate simultaneous multisite stimulation and mapping to actively manipulate the frequency and direction of AP propagation. These results establish new methodologies for 3D spatiotemporal tissue recording and control, and demonstrate the potential to impact regenerative medicine, pharmacology and electronic therapeutics.
实时映射和操控三维(3D)组织中的电生理学可能对基础科学和临床研究产生重要影响,但由于缺乏有效的方法,这一目标仍难以实现。在这里,我们介绍了一种由 64 个具有亚细胞尺寸和亚毫秒时间分辨率的可寻址器件组成的、类似于组织支架的 3D 纳米电子阵列。实时细胞外动作电位(AP)记录揭示了 3D 心脏组织中 AP 传播的定量图谱,使我们能够原位追踪发育中心脏组织中 3D 传导途径的演变拓扑,并探测瞬时心律失常疾病模型和随后的组织自适应中的 AP 传导特性的动力学。我们进一步展示了同时进行的多部位刺激和映射,以主动控制 AP 传播的频率和方向。这些结果为 3D 时空组织记录和控制建立了新的方法,并展示了在再生医学、药理学和电子治疗学方面的潜在应用。