Suppr超能文献

声学生物传感器

Acoustic biosensors.

作者信息

Fogel Ronen, Limson Janice, Seshia Ashwin A

机构信息

Biotechnology Innovation Centre, Rhodes University, PO Box 94, Grahamstown 6140, South Africa.

Biotechnology Innovation Centre, Rhodes University, PO Box 94, Grahamstown 6140, South Africa

出版信息

Essays Biochem. 2016 Jun 30;60(1):101-10. doi: 10.1042/EBC20150011.

Abstract

Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors.

摘要

几十年来,人们一直在研究谐振式和声波式设备,以用于对各种生物和化学分析物进行重量传感。这些设备通过将被测量物(例如分析物吸附)作为声波物理特性(例如谐振频率、声速、耗散)的一种调制来运行,然后可以将其与吸附的分析物量相关联。这些设备还可以小型化,在成本、尺寸和可扩展性方面具有优势,以及潜在的附加功能,包括与微流体和电子设备集成、与较小尺寸和更高工作频率相关的缩放灵敏度、在嵌入单个芯片中的数百个设备阵列上进行多重检测的能力、提高通量以及在同一设备内询问更广泛模式的能力。此外,设备制造通常与半导体批量制造技术兼容,从而实现成本可扩展性以及制造过程中的高精度和可重复性。与微流体处理的集成还能够实现合适的样品预处理/分离/纯化/放大步骤,这可以提高选择性和整体信噪比。这里将对三种设备类型进行综述:(i)体声波传感器,(ii)表面声波传感器,以及(iii)微/纳机电系统(MEMS/NEMS)传感器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8192/4986463/c2fd975505e8/bse0600101fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验