Coates James, Souhami Luis, El Naqa Issam
Department of Oncology, University of Oxford , Oxford , UK.
Division of Radiation Oncology, McGill University Health Centre , Montreal, QC , Canada.
Front Oncol. 2016 Jun 14;6:149. doi: 10.3389/fonc.2016.00149. eCollection 2016.
Radiation therapy is a first-line treatment option for localized prostate cancer and radiation-induced normal tissue damage are often the main limiting factor for modern radiotherapy regimens. Conversely, under-dosing of target volumes in an attempt to spare adjacent healthy tissues limits the likelihood of achieving local, long-term control. Thus, the ability to generate personalized data-driven risk profiles for radiotherapy outcomes would provide valuable prognostic information to help guide both clinicians and patients alike. Big data applied to radiation oncology promises to deliver better understanding of outcomes by harvesting and integrating heterogeneous data types, including patient-specific clinical parameters, treatment-related dose-volume metrics, and biological risk factors. When taken together, such variables make up the basis for a multi-dimensional space (the "RadoncSpace") in which the presented modeling techniques search in order to identify significant predictors. Herein, we review outcome modeling and big data-mining techniques for both tumor control and radiotherapy-induced normal tissue effects. We apply many of the presented modeling approaches onto a cohort of hypofractionated prostate cancer patients taking into account different data types and a large heterogeneous mix of physical and biological parameters. Cross-validation techniques are also reviewed for the refinement of the proposed framework architecture and checking individual model performance. We conclude by considering advanced modeling techniques that borrow concepts from big data analytics, such as machine learning and artificial intelligence, before discussing the potential future impact of systems radiobiology approaches.
放射治疗是局限性前列腺癌的一线治疗选择,而放射诱导的正常组织损伤往往是现代放疗方案的主要限制因素。相反,为了保护相邻健康组织而对靶区剂量不足会降低实现局部长期控制的可能性。因此,生成个性化的、数据驱动的放疗结果风险概况的能力将为临床医生和患者提供有价值的预后信息,以帮助指导治疗。应用于放射肿瘤学的大数据有望通过收集和整合异构数据类型(包括患者特定的临床参数、与治疗相关的剂量体积指标和生物学风险因素)来更好地理解治疗结果。综合起来,这些变量构成了一个多维空间(“RadoncSpace”)的基础,本文提出的建模技术在这个空间中进行搜索,以识别显著的预测因子。在此,我们综述了肿瘤控制和放疗诱导的正常组织效应的结果建模和大数据挖掘技术。我们将许多提出的建模方法应用于一组接受大分割放疗的前列腺癌患者,同时考虑了不同的数据类型以及大量物理和生物学参数的异构组合。还综述了交叉验证技术,以完善所提出的框架架构并检查单个模型的性能。在讨论系统放射生物学方法的潜在未来影响之前,我们通过考虑借鉴大数据分析概念的先进建模技术(如机器学习和人工智能)来得出结论。