Suppr超能文献

用于放射治疗的放射组学和放射基因组学建模:策略、陷阱与挑战

Radiomic and radiogenomic modeling for radiotherapy: strategies, pitfalls, and challenges.

作者信息

Coates James T T, Pirovano Giacomo, El Naqa Issam

机构信息

Massachusetts General Hospital & Harvard Medical School, Center for Cancer Research, Boston, Massachusetts, United States.

Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, New York, United States.

出版信息

J Med Imaging (Bellingham). 2021 May;8(3):031902. doi: 10.1117/1.JMI.8.3.031902. Epub 2021 Mar 23.

Abstract

The power of predictive modeling for radiotherapy outcomes has historically been limited by an inability to adequately capture patient-specific variabilities; however, next-generation platforms together with imaging technologies and powerful bioinformatic tools have facilitated strategies and provided optimism. Integrating clinical, biological, imaging, and treatment-specific data for more accurate prediction of tumor control probabilities or risk of radiation-induced side effects are high-dimensional problems whose solutions could have widespread benefits to a diverse patient population-we discuss technical approaches toward this objective. Increasing interest in the above is specifically reflected by the emergence of two nascent fields, which are distinct but complementary: radiogenomics, which broadly seeks to integrate biological risk factors together with treatment and diagnostic information to generate individualized patient risk profiles, and radiomics, which further leverages large-scale imaging correlates and extracted features for the same purpose. We review classical analytical and data-driven approaches for outcomes prediction that serve as antecedents to both radiomic and radiogenomic strategies. Discussion then focuses on uses of conventional and deep machine learning in radiomics. We further consider promising strategies for the harmonization of high-dimensional, heterogeneous multiomics datasets (panomics) and techniques for nonparametric validation of best-fit models. Strategies to overcome common pitfalls that are unique to data-intensive radiomics are also discussed.

摘要

放射治疗结果预测模型的能力在历史上一直受到无法充分捕捉患者特异性变异性的限制;然而,下一代平台与成像技术和强大的生物信息学工具一起促进了相关策略的发展,并带来了希望。整合临床、生物学、成像和治疗特定数据以更准确地预测肿瘤控制概率或放射诱导副作用的风险是高维问题,其解决方案可能会给不同患者群体带来广泛益处——我们讨论实现这一目标的技术方法。对上述内容兴趣的增加具体体现在两个新兴领域的出现上,这两个领域虽不同但相互补充:放射基因组学,其广泛寻求将生物风险因素与治疗和诊断信息整合在一起,以生成个体化患者风险概况;以及放射组学,其进一步利用大规模成像相关性和提取的特征来实现相同目的。我们回顾了作为放射组学和放射基因组学策略前身的用于结果预测的经典分析和数据驱动方法。随后的讨论集中在传统机器学习和深度学习在放射组学中的应用。我们还进一步考虑了协调高维、异质多组学数据集(泛组学)的有前景策略以及最佳拟合模型的非参数验证技术。还讨论了克服数据密集型放射组学特有的常见陷阱的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6166/7985651/37eb1bbbb2f2/JMI-008-031902-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验