Suppr超能文献

迈向基于知识的通用流感表位组合疫苗设计

Towards the knowledge-based design of universal influenza epitope ensemble vaccines.

作者信息

Sheikh Qamar M, Gatherer Derek, Reche Pedro A, Flower Darren R

机构信息

School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.

Division of Biomedical & Life Sciences, Faculty of Health & Medicine, Lancaster University, Lancaster LA1 4YW, UK.

出版信息

Bioinformatics. 2016 Nov 1;32(21):3233-3239. doi: 10.1093/bioinformatics/btw399. Epub 2016 Jul 10.

Abstract

MOTIVATION

Influenza A viral heterogeneity remains a significant threat due to unpredictable antigenic drift in seasonal influenza and antigenic shifts caused by the emergence of novel subtypes. Annual review of multivalent influenza vaccines targets strains of influenza A and B likely to be predominant in future influenza seasons. This does not induce broad, cross protective immunity against emergent subtypes. Better strategies are needed to prevent future pandemics. Cross-protection can be achieved by activating CD8+ and CD4+ T cells against highly conserved regions of the influenza genome. We combine available experimental data with informatics-based immunological predictions to help design vaccines potentially able to induce cross-protective T-cells against multiple influenza subtypes.

RESULTS

To exemplify our approach we designed two epitope ensemble vaccines comprising highly conserved and experimentally verified immunogenic influenza A epitopes as putative non-seasonal influenza vaccines; one specifically targets the US population and the other is a universal vaccine. The USA-specific vaccine comprised 6 CD8+ T cell epitopes (GILGFVFTL, FMYSDFHFI, GMDPRMCSL, SVKEKDMTK, FYIQMCTEL, DTVNRTHQY) and 3 CD4+ epitopes (KGILGFVFTLTVPSE, EYIMKGVYINTALLN, ILGFVFTLTVPSERG). The universal vaccine comprised 8 CD8+ epitopes: (FMYSDFHFI, GILGFVFTL, ILRGSVAHK, FYIQMCTEL, ILKGKFQTA, YYLEKANKI, VSDGGPNLY, YSHGTGTGY) and the same 3 CD4+ epitopes. Our USA-specific vaccine has a population protection coverage (portion of the population potentially responsive to one or more component epitopes of the vaccine, PPC) of over 96 and 95% coverage of observed influenza subtypes. The universal vaccine has a PPC value of over 97 and 88% coverage of observed subtypes.

AVAILABILITY AND IMPLEMENTATION

http://imed.med.ucm.es/Tools/episopt.html CONTACT: d.r.flower@aston.ac.uk.

摘要

动机

由于季节性流感中不可预测的抗原漂移以及新型亚型出现导致的抗原转变,甲型流感病毒的异质性仍然是一个重大威胁。每年对多价流感疫苗进行审查,针对未来流感季节可能占主导地位的甲型和乙型流感毒株。这并不能诱导针对新出现亚型的广泛交叉保护性免疫。需要更好的策略来预防未来的大流行。通过激活针对流感基因组高度保守区域的CD8 +和CD4 + T细胞,可以实现交叉保护。我们将现有的实验数据与基于信息学的免疫预测相结合,以帮助设计可能能够诱导针对多种流感亚型的交叉保护性T细胞的疫苗。

结果

为了举例说明我们的方法,我们设计了两种表位组合疫苗,它们包含高度保守且经过实验验证的甲型流感免疫原性表位,作为假定的非季节性流感疫苗;一种专门针对美国人群,另一种是通用疫苗。美国特异性疫苗包含6个CD8 + T细胞表位(GILGFVFTL、FMYSDFHFI、GMDPRMCSL、SVKEKDMTK、FYIQMCTEL、DTVNRTHQY)和3个CD4 +表位(KGILGFVFTLTVPSE、EYIMKGVYINTALLN、ILGFVFTLTVPSERG)。通用疫苗包含8个CD8 +表位:(FMYSDFHFI、GILGFVFTL、ILRGSVAHK、FYIQMCTEL、ILKGKFQTA、YYLEKANKI、VSDGGPNLYY、SHGTGTGY)以及相同的3个CD4 +表位。我们的美国特异性疫苗的人群保护覆盖率(对疫苗的一个或多个组成表位有潜在反应的人群比例,PPC)超过96%,对观察到的流感亚型的覆盖率为95%。通用疫苗的PPC值超过97%,对观察到的亚型的覆盖率为88%。

可用性和实施方式

http://imed.med.ucm.es/Tools/episopt.html 联系方式:d.r.flower@aston.ac.uk

相似文献

1
Towards the knowledge-based design of universal influenza epitope ensemble vaccines.
Bioinformatics. 2016 Nov 1;32(21):3233-3239. doi: 10.1093/bioinformatics/btw399. Epub 2016 Jul 10.
2
Highly conserved influenza T cell epitopes induce broadly protective immunity.
Vaccine. 2019 Aug 23;37(36):5371-5381. doi: 10.1016/j.vaccine.2019.07.033. Epub 2019 Jul 19.
3
Epitope specific T-cell responses against influenza A in a healthy population.
Immunology. 2016 Feb;147(2):165-77. doi: 10.1111/imm.12548. Epub 2015 Dec 8.
7
Why Are CD8 T Cell Epitopes of Human Influenza A Virus Conserved?
J Virol. 2019 Mar 5;93(6). doi: 10.1128/JVI.01534-18. Print 2019 Mar 15.
9
Virus-specific T cells as correlate of (cross-)protective immunity against influenza.
Vaccine. 2015 Jan 15;33(4):500-6. doi: 10.1016/j.vaccine.2014.11.054. Epub 2014 Dec 9.
10
Immunoinformatics approach for a novel multi-epitope subunit vaccine design against various subtypes of Influenza A virus.
Immunobiology. 2021 Mar;226(2):152053. doi: 10.1016/j.imbio.2021.152053. Epub 2021 Jan 21.

引用本文的文献

2
Immunoprecipitation methods impact the peptide repertoire in immunopeptidomics.
Front Immunol. 2023 Jul 21;14:1219720. doi: 10.3389/fimmu.2023.1219720. eCollection 2023.
3
To Affinity and Beyond: A Personal Reflection on the Design and Discovery of Drugs.
Molecules. 2022 Nov 7;27(21):7624. doi: 10.3390/molecules27217624.
4
Immunogenic epitope prediction to create a universal influenza vaccine.
Heliyon. 2022 Apr 30;8(5):e09364. doi: 10.1016/j.heliyon.2022.e09364. eCollection 2022 May.
6
In silico design of recombinant multi-epitope vaccine against influenza A virus.
BMC Bioinformatics. 2022 Feb 2;22(Suppl 14):617. doi: 10.1186/s12859-022-04581-6.
7
Deciphering Human Leukocyte Antigen Susceptibility Maps From Immunopeptidomics Characterization in Oncology and Infections.
Front Cell Infect Microbiol. 2021 May 28;11:642583. doi: 10.3389/fcimb.2021.642583. eCollection 2021.
9
An Overview of Current Uses and Future Opportunities for Computer-Assisted Design of Vaccines for Neglected Tropical Diseases.
Adv Appl Bioinform Chem. 2021 Feb 15;14:25-47. doi: 10.2147/AABC.S258759. eCollection 2021.

本文引用的文献

1
Design and Evaluation of a Multi-Epitope Peptide of Human Metapneumovirus.
Intervirology. 2015;58(6):403-12. doi: 10.1159/000445059. Epub 2016 Apr 21.
2
Beyond antigens and adjuvants: formulating future vaccines.
J Clin Invest. 2016 Mar 1;126(3):799-808. doi: 10.1172/JCI81083.
4
Designing string-of-beads vaccines with optimal spacers.
Genome Med. 2016 Jan 26;8(1):9. doi: 10.1186/s13073-016-0263-6.
6
Peptide Immunotherapy in Vaccine Development: From Epitope to Adjuvant.
Adv Protein Chem Struct Biol. 2015;99:1-14. doi: 10.1016/bs.apcsb.2015.03.001. Epub 2015 Apr 8.
7
Preclinical development of HIvax: Human survivin highly immunogenic vaccines.
Hum Vaccin Immunother. 2015;11(7):1585-95. doi: 10.1080/21645515.2015.1050572.
8
Immunogenicity of infectious pathogens and vaccine antigens.
BMC Immunol. 2015 May 29;16:31. doi: 10.1186/s12865-015-0095-y.
9
Advancements in the development of subunit influenza vaccines.
Microbes Infect. 2015 Feb;17(2):123-34. doi: 10.1016/j.micinf.2014.12.006. Epub 2014 Dec 18.
10
An overview of bioinformatics tools for epitope prediction: implications on vaccine development.
J Biomed Inform. 2015 Feb;53:405-14. doi: 10.1016/j.jbi.2014.11.003. Epub 2014 Nov 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验