Ren Kaili, Drummond Christopher A, Brewster Pamela S, Haller Steven T, Tian Jiang, Cooper Christopher J, Zhang Biao
Department of Mathematics and Statistics, The University of Toledo, Toledo, 43606, OH, U.S.A..
Department of Medicine, The University of Toledo, Toledo, 43614, OH, U.S.A.
Stat Med. 2016 Nov 30;35(27):5009-5028. doi: 10.1002/sim.7038. Epub 2016 Jul 14.
Missing responses are common problems in medical, social, and economic studies. When responses are missing at random, a complete case data analysis may result in biases. A popular debias method is inverse probability weighting proposed by Horvitz and Thompson. To improve efficiency, Robins et al. proposed an augmented inverse probability weighting method. The augmented inverse probability weighting estimator has a double-robustness property and achieves the semiparametric efficiency lower bound when the regression model and propensity score model are both correctly specified. In this paper, we introduce an empirical likelihood-based estimator as an alternative to Qin and Zhang (2007). Our proposed estimator is also doubly robust and locally efficient. Simulation results show that the proposed estimator has better performance when the propensity score is correctly modeled. Moreover, the proposed method can be applied in the estimation of average treatment effect in observational causal inferences. Finally, we apply our method to an observational study of smoking, using data from the Cardiovascular Outcomes in Renal Atherosclerotic Lesions clinical trial. Copyright © 2016 John Wiley & Sons, Ltd.
缺失响应是医学、社会和经济研究中常见的问题。当响应是随机缺失时,完全病例数据分析可能会导致偏差。一种流行的去偏方法是由霍维茨和汤普森提出的逆概率加权法。为了提高效率,罗宾斯等人提出了一种增强逆概率加权法。增强逆概率加权估计量具有双重稳健性,并且当回归模型和倾向得分模型都被正确设定时,能达到半参数效率下界。在本文中,我们引入一种基于经验似然的估计量作为秦和张(2007)方法的替代方法。我们提出的估计量同样具有双重稳健性且局部有效。模拟结果表明,当倾向得分被正确建模时,所提出的估计量具有更好的性能。此外,所提出的方法可应用于观察性因果推断中平均治疗效果的估计。最后,我们将我们的方法应用于一项关于吸烟的观察性研究,使用来自肾动脉粥样硬化病变心血管结局临床试验的数据。版权所有© 2016约翰·威利父子有限公司。