Pharmaceutical Technology & Biopharmacy, Friedrich Schiller University Jena, Lessingstraße 8, 07743 Jena, Germany.
Micromod Partikeltechnologie GmbH, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany.
Nanomedicine (Lond). 2019 Jul;14(13):1681-1706. doi: 10.2217/nnm-2018-0382. Epub 2019 Jul 12.
To simulate the stability and degradation of superparamagnetic iron oxide nanoparticles (MNP) as part of their life cycle using complex simulated biological fluids. A set of 13 MNP with different polymeric or inorganic shell materials was synthesized and characterized regarding stability and degradation of core and shell in simulated biological fluids. All MNP formulations showed excellent stability during storage and in simulated body fluid. In endosomal/lysosomal media the degradation behavior depended on shell characteristics (e.g., charge, acid-base character) and temperature enabling the development of an accelerated stress test protocol. Kinetics of transformations depending on the MNP type could be established to define structure-activity relationships as prediction model for rational particle design.
采用复杂模拟生物液模拟超顺磁性氧化铁纳米颗粒 (MNP) 作为其生命周期的一部分的稳定性和降解。 合成了一组 13 种具有不同聚合或无机壳材料的 MNP,并对其在模拟生物液中的核心和壳的稳定性和降解进行了表征。 所有 MNP 制剂在储存和模拟体液中均表现出优异的稳定性。 在内涵体/溶酶体介质中,降解行为取决于壳特性(例如电荷、酸碱特性)和温度,从而能够开发加速应激测试协议。 可以根据 MNP 类型建立转化动力学,以确定结构-活性关系作为合理的颗粒设计的预测模型。