Torrent-Sellens Joan, Díaz-Chao Ángel, Soler-Ramos Ivan, Saigí-Rubió Francesc
Department of Economics and Business, Universitat Oberta de Catalunya, Barcelona, Spain.
J Med Internet Res. 2016 Jul 22;18(7):e188. doi: 10.2196/jmir.5605.
More advanced methods and models are needed to evaluate the participation of patients and citizens in the shared health care model that eHealth proposes.
The goal of our study was to design and evaluate a predictive multidimensional model of eHealth usage.
We used 2011 survey data from a sample of 13,000 European citizens aged 16-74 years who had used the Internet in the previous 3 months. We proposed and tested an eHealth usage composite indicator through 2-stage structural equation modelling with latent variables and measurement errors. Logistic regression (odds ratios, ORs) to model the predictors of eHealth usage was calculated using health status and sociodemographic independent variables.
The dimensions with more explanatory power of eHealth usage were health Internet attitudes, information health Internet usage, empowerment of health Internet users, and the usefulness of health Internet usage. Some 52.39% (6811/13,000) of European Internet users' eHealth usage was more intensive (greater than the mean). Users with long-term health problems or illnesses (OR 1.20, 95% CI 1.12-1.29) or receiving long-term treatment (OR 1.11, 95% CI 1.03-1.20), having family members with long-term health problems or illnesses (OR 1.44, 95% CI 1.34-1.55), or undertaking care activities for other people (OR 1.58, 95% CI 1.40-1.77) had a high propensity toward intensive eHealth usage. Sociodemographic predictors showed that Internet users who were female (OR 1.23, 95% CI 1.14-1.31), aged 25-54 years (OR 1.12, 95% CI 1.05-1.21), living in larger households (3 members: OR 1.25, 95% CI 1.15-1.36; 5 members: OR 1.13, 95% CI 0.97-1.28; ≥6 members: OR 1.31, 95% CI 1.10-1.57), had more children <16 years of age (1 child: OR 1.29, 95% CI 1.18-1.14; 2 children: OR 1.05, 95% CI 0.94-1.17; 4 children: OR 1.35, 95% CI 0.88-2.08), and had more family members >65 years of age (1 member: OR 1.33, 95% CI 1.18-1.50; ≥4 members: OR 1.82, 95% CI 0.54-6.03) had a greater propensity toward intensive eHealth usage. Likewise, users residing in densely populated areas, such as cities and large towns (OR 1.17, 95% CI 1.09-1.25), also had a greater propensity toward intensive eHealth usage. Educational levels presented an inverted U shape in relation to intensive eHealth usage, with greater propensities among those with a secondary education (OR 1.08, 95% CI 1.01-1.16). Finally, occupational categories and net monthly income data suggest a higher propensity among the employed or self-employed (OR 1.07, 95% CI 0.99-1.15) and among the minimum wage stratum, earning ≤€1000 per month (OR 1.66, 95% CI 1.48-1.87).
We provide new evidence of inequalities that explain intensive eHealth usage. The results highlight the need to develop more specific eHealth practices to address different realities.
需要更先进的方法和模型来评估患者和公民在电子健康所倡导的共享医疗模式中的参与情况。
我们研究的目标是设计并评估一个电子健康使用情况的预测性多维模型。
我们使用了2011年对13000名年龄在16 - 74岁之间、在过去3个月内使用过互联网的欧洲公民样本的调查数据。我们通过带有潜在变量和测量误差的两阶段结构方程模型提出并测试了一个电子健康使用综合指标。使用健康状况和社会人口统计学自变量,通过逻辑回归(优势比,OR)来对电子健康使用的预测因素进行建模。
对电子健康使用具有更强解释力的维度包括健康互联网态度、信息健康互联网使用、健康互联网用户的赋权以及健康互联网使用的有用性。约52.39%(6811/13000)的欧洲互联网用户的电子健康使用更为频繁(高于平均水平)。患有长期健康问题或疾病的用户(OR 1.20,95%CI 1.12 - 1.29)或接受长期治疗的用户(OR 1.11,95%CI 1.03 - 1.20)、有家庭成员患有长期健康问题或疾病的用户(OR 1.44,95%CI 1.34 - 1.55)或为他人承担护理活动的用户(OR 1.58,95%CI 1.40 - 1.77)有较高的频繁使用电子健康的倾向。社会人口统计学预测因素表明,女性互联网用户(OR 1.23,95%CI 1.14 - 1.31)、年龄在25 - 54岁之间的用户(OR 1.12,95%CI 1.05 - 1.21)、生活在较大规模家庭中的用户(3人家庭:OR 1.25,95%CI 1.15 - 1.36;5人家庭:OR 1.13,95%CI 0.97 - 1.28;≥6人家庭:OR 1.31,95%CI 1.10 - 1.57)、有更多16岁以下子女的用户(1个孩子:OR 1.29,95%CI 1.18 - 1.14;2个孩子:OR 1.05,95%CI 0.94 - 1.17;4个孩子:OR 1.35,95%CI 0.88 - 2.08)以及有更多65岁以上家庭成员的用户(1个成员:OR 1.33,95%CI 1.18 - 1.50;≥4个成员:OR 1.82,95%CI 0.54 - 6.03)有更高的频繁使用电子健康的倾向。同样,居住在人口密集地区(如城市和大城镇)的用户(OR 1.17,95%CI 1.09 - 1.25)也有更高的频繁使用电子健康的倾向。教育水平与频繁使用电子健康呈倒U形关系,中等教育水平的用户倾向更高(OR 1.08,95%CI 1.01 - 1.16)。最后,职业类别和月净收入数据表明,受雇或自营职业者(OR 1.07,95%CI 0.99 - 1.15)以及月收入≤1000欧元的最低工资阶层(OR 1.66,95%CI 1.48 - 1.87)有更高的倾向。
我们提供了新的证据来解释频繁使用电子健康的不平等现象。结果强调了开发更具针对性的电子健康实践以应对不同现实情况的必要性。