Suppr超能文献

复杂调查数据的时空平滑处理:儿童死亡率的小区域估计

Space-Time Smoothing of Complex Survey Data: Small Area Estimation for Child Mortality.

作者信息

Mercer Laina D, Wakefield Jon, Pantazis Athena, Lutambi Angelina M, Masanja Honorati, Clark Samuel

机构信息

Department of Statistics University of Washington, USA.

Department of Statistics University of Washington, USA; Department of Biostatistics, University of Washington, USA.

出版信息

Ann Appl Stat. 2015 Dec;9(4):1889-1905. doi: 10.1214/15-AOAS872.

Abstract

Many people living in low and middle-income countries are not covered by civil registration and vital statistics systems. Consequently, a wide variety of other types of data including many household sample surveys are used to estimate health and population indicators. In this paper we combine data from sample surveys and demographic surveillance systems to produce small area estimates of child mortality through time. Small area estimates are necessary to understand geographical heterogeneity in health indicators when full-coverage vital statistics are not available. For this endeavor spatio-temporal smoothing is beneficial to alleviate problems of data sparsity. The use of conventional hierarchical models requires careful thought since the survey weights may need to be considered to alleviate bias due to non-random sampling and non-response. The application that motivated this work is estimation of child mortality rates in five-year time intervals in regions of Tanzania. Data come from Demographic and Health Surveys conducted over the period 1991-2010 and two demographic surveillance system sites. We derive a variance estimator of under five years child mortality that accounts for the complex survey weighting. For our application, the hierarchical models we consider include random effects for area, time and survey and we compare models using a variety of measures including the conditional predictive ordinate (CPO). The method we propose is implemented via the fast and accurate integrated nested Laplace approximation (INLA).

摘要

许多生活在低收入和中等收入国家的人没有被民事登记和人口动态统计系统覆盖。因此,包括许多家庭抽样调查在内的各种各样的其他类型数据被用于估计健康和人口指标。在本文中,我们结合抽样调查和人口监测系统的数据,以生成随时间变化的儿童死亡率小区域估计值。当无法获得全面覆盖的人口动态统计数据时,小区域估计对于了解健康指标的地理异质性是必要的。对于这项工作,时空平滑有助于缓解数据稀疏问题。由于可能需要考虑调查权重以减轻因非随机抽样和无应答导致的偏差,因此使用传统的分层模型需要仔细考虑。推动这项工作的应用是估计坦桑尼亚各地区五年时间间隔内的儿童死亡率。数据来自1991 - 2010年期间进行的人口与健康调查以及两个人口监测系统站点。我们推导出了一个五岁以下儿童死亡率的方差估计量,该估计量考虑了复杂的调查权重。对于我们的应用,我们考虑的分层模型包括区域、时间和调查的随机效应,并且我们使用包括条件预测纵坐标(CPO)在内的各种度量来比较模型。我们提出的方法通过快速准确的集成嵌套拉普拉斯近似(INLA)来实现。

相似文献

7
Model-based inference for small area estimation with sampling weights.基于模型的小区域估计抽样权重推断
Spat Stat. 2016 Nov;18:455-473. doi: 10.1016/j.spasta.2016.09.004. Epub 2016 Oct 14.

引用本文的文献

2
Smoothed model-assisted small area estimation of proportions.比例的平滑模型辅助小区域估计。
Can J Stat. 2024 Jun;52(2):337-358. doi: 10.1002/cjs.11787. Epub 2023 Jul 30.
6
Small Area Estimation for Disease Prevalence Mapping.疾病患病率地图绘制的小区域估计
Int Stat Rev. 2020 Aug;88(2):398-418. doi: 10.1111/insr.12400. Epub 2020 Jul 24.
9
Harmonizing child mortality data at disparate geographic levels.协调不同地理水平的儿童死亡率数据。
Stat Methods Med Res. 2021 May;30(5):1187-1210. doi: 10.1177/0962280220988742. Epub 2021 Feb 1.

本文引用的文献

8
Bayesian inference for generalized linear mixed models.贝叶斯推断在广义线性混合模型中的应用。
Biostatistics. 2010 Jul;11(3):397-412. doi: 10.1093/biostatistics/kxp053. Epub 2009 Dec 4.
10
Penalized loss functions for Bayesian model comparison.用于贝叶斯模型比较的惩罚损失函数。
Biostatistics. 2008 Jul;9(3):523-39. doi: 10.1093/biostatistics/kxm049. Epub 2008 Jan 21.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验