Suppr超能文献

ABSSeq:一种基于对绝对表达差异进行建模的新型RNA测序分析方法。

ABSSeq: a new RNA-Seq analysis method based on modelling absolute expression differences.

作者信息

Yang Wentao, Rosenstiel Philip C, Schulenburg Hinrich

机构信息

Evolutionary Ecology and Genetics, Zoological Institute, CAU Kiel, Am Botanischen Garten 9, 24118, Kiel, Germany.

Centre for Molecular Biology, Institute for Clinical Molecular Biology, CAU Kiel, Am Botanischen Garten 11, 24118, Kiel, Germany.

出版信息

BMC Genomics. 2016 Aug 4;17:541. doi: 10.1186/s12864-016-2848-2.

Abstract

BACKGROUND

The recent advances in next generation sequencing technology have made the sequencing of RNA (i.e., RNA-Seq) an extemely popular approach for gene expression analysis. Identification of significant differential expression represents a crucial initial step in these analyses, on which most subsequent inferences of biological functions are built. Yet, for identification of these subsequently analysed genes, most studies use an additional minimal threshold of differential expression that is not captured by the applied statistical procedures.

RESULTS

Here we introduce a new analysis approach, ABSSeq, which uses a negative binomal distribution to model absolute expression differences between conditions, taking into account variations across genes and samples as well as magnitude of differences. In comparison to alternative methods, ABSSeq shows higher performance on controling type I error rate and at least a similar ability to correctly identify differentially expressed genes.

CONCLUSIONS

ABSSeq specifically considers the overall magnitude of expression differences, which enhances the power in detecting truly differentially expressed genes by reducing false positives at both very low and high expression level. In addition, ABSSeq offers to calculate shrinkage of fold change to facilitate gene ranking and effective outlier detection.

摘要

背景

新一代测序技术的最新进展使RNA测序(即RNA-Seq)成为基因表达分析中极其流行的方法。识别显著差异表达是这些分析中的关键初始步骤,大多数后续生物学功能推断都基于此。然而,对于识别这些后续分析的基因,大多数研究使用了一个额外的差异表达最小阈值,而应用的统计程序并未捕捉到该阈值。

结果

在此,我们引入了一种新的分析方法ABSSeq,该方法使用负二项分布对不同条件之间的绝对表达差异进行建模,同时考虑了基因和样本间的变异以及差异幅度。与其他方法相比,ABSSeq在控制I型错误率方面表现更优,并且在正确识别差异表达基因方面至少具有相似的能力。

结论

ABSSeq特别考虑了表达差异的总体幅度,通过在极低和高表达水平上减少假阳性,增强了检测真正差异表达基因的能力。此外,ABSSeq还提供计算倍数变化的收缩值,以促进基因排名和有效的异常值检测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验