乳腺癌协会联盟中乳腺癌组织微阵列中 ER、PR、HER2、CK5/6 和 EGFR 的自动评分性能。
Performance of automated scoring of ER, PR, HER2, CK5/6 and EGFR in breast cancer tissue microarrays in the Breast Cancer Association Consortium.
机构信息
Cancer Research UK Cambridge Institute, University of Cambridge Cambridge UK.
Centre for Cancer Genetic Epidemiology, Department of Oncology University of Cambridge Cambridge UK.
出版信息
J Pathol Clin Res. 2014 Dec 4;1(1):18-32. doi: 10.1002/cjp2.3. eCollection 2015 Jan.
Breast cancer risk factors and clinical outcomes vary by tumour marker expression. However, individual studies often lack the power required to assess these relationships, and large-scale analyses are limited by the need for high throughput, standardized scoring methods. To address these limitations, we assessed whether automated image analysis of immunohistochemically stained tissue microarrays can permit rapid, standardized scoring of tumour markers from multiple studies. Tissue microarray sections prepared in nine studies containing 20 263 cores from 8267 breast cancers stained for two nuclear (oestrogen receptor, progesterone receptor), two membranous (human epidermal growth factor receptor 2 and epidermal growth factor receptor) and one cytoplasmic (cytokeratin 5/6) marker were scanned as digital images. Automated algorithms were used to score markers in tumour cells using the Ariol system. We compared automated scores against visual reads, and their associations with breast cancer survival. Approximately 65-70% of tissue microarray cores were satisfactory for scoring. Among satisfactory cores, agreement between dichotomous automated and visual scores was highest for oestrogen receptor (Kappa = 0.76), followed by human epidermal growth factor receptor 2 (Kappa = 0.69) and progesterone receptor (Kappa = 0.67). Automated quantitative scores for these markers were associated with hazard ratios for breast cancer mortality in a dose-response manner. Considering visual scores of epidermal growth factor receptor or cytokeratin 5/6 as the reference, automated scoring achieved excellent negative predictive value (96-98%), but yielded many false positives (positive predictive value = 30-32%). For all markers, we observed substantial heterogeneity in automated scoring performance across tissue microarrays. Automated analysis is a potentially useful tool for large-scale, quantitative scoring of immunohistochemically stained tissue microarrays available in consortia. However, continued optimization, rigorous marker-specific quality control measures and standardization of tissue microarray designs, staining and scoring protocols is needed to enhance results.
乳腺癌的风险因素和临床结果因肿瘤标志物的表达而不同。然而,个别研究往往缺乏评估这些关系所需的能力,而大规模分析受到需要高通量、标准化评分方法的限制。为了解决这些限制,我们评估了免疫组织化学染色的组织微阵列的自动图像分析是否可以允许从多个研究中快速、标准化地对肿瘤标志物进行评分。从 8267 例乳腺癌的 20263 个核心中制备的 9 项研究的组织微阵列切片,用两种核(雌激素受体、孕激素受体)、两种膜(人表皮生长因子受体 2 和表皮生长因子受体)和一种细胞质(细胞角蛋白 5/6)标记物染色,作为数字图像进行扫描。使用 Ariol 系统,自动算法用于对肿瘤细胞中的标志物进行评分。我们比较了自动评分与视觉读数的相关性,以及它们与乳腺癌生存的相关性。大约 65-70%的组织微阵列核心可用于评分。在可接受的核心中,雌激素受体的二分类自动评分与视觉评分之间的一致性最高(Kappa=0.76),其次是人表皮生长因子受体 2(Kappa=0.69)和孕激素受体(Kappa=0.67)。这些标志物的自动定量评分与乳腺癌死亡率的风险比呈剂量反应关系。将表皮生长因子受体或细胞角蛋白 5/6 的视觉评分视为参考,自动评分具有极好的阴性预测值(96-98%),但产生了许多假阳性(阳性预测值=30-32%)。对于所有标志物,我们观察到自动评分在组织微阵列中的表现存在很大的异质性。自动分析是一种用于对联盟中可获得的免疫组织化学染色的组织微阵列进行大规模、定量评分的潜在有用工具。然而,需要继续优化、严格的标志物特异性质量控制措施以及组织微阵列设计、染色和评分方案的标准化,以提高结果。