Suppr超能文献

使用扩散时间依赖性扩散加权磁共振成像对比剂在肿瘤细胞中证明非高斯受限扩散

Demonstration of Non-Gaussian Restricted Diffusion in Tumor Cells Using Diffusion Time-Dependent Diffusion-Weighted Magnetic Resonance Imaging Contrast.

作者信息

Hope Tuva R, White Nathan S, Kuperman Joshua, Chao Ying, Yamin Ghiam, Bartch Hauke, Schenker-Ahmed Natalie M, Rakow-Penner Rebecca, Bussell Robert, Nomura Natsuko, Kesari Santosh, Bjørnerud Atle, Dale Anders M

机构信息

The Interventional Centre, Oslo University Hospital, Oslo, Norway; Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.

Department of Radiology, University of California San Diego , La Jolla, CA , USA.

出版信息

Front Oncol. 2016 Aug 2;6:179. doi: 10.3389/fonc.2016.00179. eCollection 2016.

Abstract

The diffusion-weighted magnetic resonance imaging (DWI) technique enables quantification of water mobility for probing microstructural properties of biological tissue and has become an effective tool for collecting information about the underlying pathology of cancerous tissue. Measurements using multiple b-values have indicated biexponential signal attenuation, ascribed to "fast" (high ADC) and "slow" (low ADC) diffusion components. In this empirical study, we investigate the properties of the diffusion time (Δ)-dependent components of the diffusion-weighted (DW) signal in a constant b-value experiment. A xenograft gliobastoma mouse was imaged using Δ = 11 ms, 20 ms, 40 ms, 60 ms, and b = 500-4000 s/mm(2) in intervals of 500 s/mm(2). Data were corrected for EPI distortions, and the Δ-dependence on the DW-signal was measured within three regions of interest [intermediate- and high-density tumor regions and normal-appearing brain (NAB) tissue regions]. In this study, we verify the assumption that the slow decaying component of the DW-signal is non-Gaussian and dependent on Δ, consistent with restricted diffusion of the intracellular space. As the DW-signal is a function of Δ and is specific to restricted diffusion, manipulating Δ at constant b-value (cb) provides a complementary and direct approach for separating the restricted from the hindered diffusion component. We found that Δ-dependence is specific to the tumor tissue signal. Based on an extended biexponential model, we verified the interpretation of the diffusion time-dependent contrast and successfully estimated the intracellular restricted ADC, signal volume fraction, and cell size within each ROI.

摘要

扩散加权磁共振成像(DWI)技术能够量化水的流动性,以探究生物组织的微观结构特性,并已成为收集有关癌组织潜在病理学信息的有效工具。使用多个b值进行的测量表明存在双指数信号衰减,这归因于“快速”(高表观扩散系数[ADC])和“缓慢”(低ADC)扩散成分。在这项实证研究中,我们在恒定b值实验中研究了扩散加权(DW)信号的扩散时间(Δ)依赖性成分的特性。使用Δ = 11毫秒、20毫秒、40毫秒、60毫秒,以及b = 500 - 4000 s/mm²(间隔为500 s/mm²)对一只异种移植胶质母细胞瘤小鼠进行成像。对数据进行了回波平面成像(EPI)失真校正,并在三个感兴趣区域[中高密度肿瘤区域和正常脑(NAB)组织区域]内测量了DW信号对Δ的依赖性。在本研究中,我们验证了以下假设:DW信号的缓慢衰减成分是非高斯的且依赖于Δ,这与细胞内空间的受限扩散一致。由于DW信号是Δ的函数且特定于受限扩散,在恒定b值(cb)下操纵Δ为分离受限扩散成分和受阻扩散成分提供了一种互补且直接的方法。我们发现Δ依赖性特定于肿瘤组织信号。基于扩展双指数模型,我们验证了对扩散时间依赖性对比度的解释,并成功估计了每个感兴趣区域内的细胞内受限ADC、信号体积分数和细胞大小。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c697/4970563/7adcc0d75da3/fonc-06-00179-g001.jpg

相似文献

2
Diffusion restriction in the human spinal cord characterized in vivo with high b-value STEAM diffusion imaging.
Neuroimage. 2013 Nov 15;82:416-25. doi: 10.1016/j.neuroimage.2013.05.122. Epub 2013 Jun 5.
3
Mathematical models for the diffusion magnetic resonance signal abnormality in patients with prion diseases.
Neuroimage Clin. 2014 Nov 29;7:142-54. doi: 10.1016/j.nicl.2014.11.017. eCollection 2015.
4
Modeling an equivalent b-value in diffusion-weighted steady-state free precession.
Magn Reson Med. 2020 Aug;84(2):873-884. doi: 10.1002/mrm.28169. Epub 2020 Jan 10.
5
Comparisons of multi b-value DWI signal analysis with pathological specimen of breast cancer.
Magn Reson Med. 2012 Sep;68(3):890-7. doi: 10.1002/mrm.23277. Epub 2011 Dec 8.
9
Biexponential Signal Attenuation Analysis of Diffusion-weighted Imaging of Breast.
Magn Reson Med Sci. 2010;9(4):195-207. doi: 10.2463/mrms.9.195.

引用本文的文献

1
Multimodal apparent diffusion MRI model in noninvasive evaluation of breast cancer and Ki-67 expression.
Cancer Imaging. 2024 Oct 11;24(1):137. doi: 10.1186/s40644-024-00780-x.
3
4
A multicenter study of cervical cancer using quantitative diffusion-weighted imaging.
Acta Radiol. 2024 Jul;65(7):851-859. doi: 10.1177/02841851231222360. Epub 2024 Jan 9.
8
Characterization of the diffusion signal of breast tissues using multi-exponential models.
Magn Reson Med. 2022 Apr;87(4):1938-1951. doi: 10.1002/mrm.29090. Epub 2021 Dec 14.
9
Advances in Diffusion and Perfusion MRI for Quantitative Cancer Imaging.
Curr Pathobiol Rep. 2019 Dec;7(4):129-141. doi: 10.1007/s40139-019-00204-7. Epub 2019 Dec 2.

本文引用的文献

1
Diffusion-weighted imaging in cancer: physical foundations and applications of restriction spectrum imaging.
Cancer Res. 2014 Sep 1;74(17):4638-52. doi: 10.1158/0008-5472.CAN-13-3534.
3
Noninvasive quantification of solid tumor microstructure using VERDICT MRI.
Cancer Res. 2014 Apr 1;74(7):1902-12. doi: 10.1158/0008-5472.CAN-13-2511. Epub 2014 Feb 3.
4
Distinct effects of nuclear volume fraction and cell diameter on high b-value diffusion MRI contrast in tumors.
Magn Reson Med. 2014 Nov;72(5):1435-43. doi: 10.1002/mrm.25039. Epub 2013 Dec 19.
6
The Human Connectome Project and beyond: initial applications of 300 mT/m gradients.
Neuroimage. 2013 Oct 15;80:234-45. doi: 10.1016/j.neuroimage.2013.05.074. Epub 2013 May 24.
7
The role of tissue microstructure and water exchange in biophysical modelling of diffusion in white matter.
MAGMA. 2013 Aug;26(4):345-70. doi: 10.1007/s10334-013-0371-x. Epub 2013 Feb 27.
10
Characterization of a human tumorsphere glioma orthotopic model using magnetic resonance imaging.
J Neurooncol. 2011 Sep;104(2):473-81. doi: 10.1007/s11060-010-0517-x. Epub 2011 Jan 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验