Hope Tuva R, White Nathan S, Kuperman Joshua, Chao Ying, Yamin Ghiam, Bartch Hauke, Schenker-Ahmed Natalie M, Rakow-Penner Rebecca, Bussell Robert, Nomura Natsuko, Kesari Santosh, Bjørnerud Atle, Dale Anders M
The Interventional Centre, Oslo University Hospital, Oslo, Norway; Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.
Department of Radiology, University of California San Diego , La Jolla, CA , USA.
Front Oncol. 2016 Aug 2;6:179. doi: 10.3389/fonc.2016.00179. eCollection 2016.
The diffusion-weighted magnetic resonance imaging (DWI) technique enables quantification of water mobility for probing microstructural properties of biological tissue and has become an effective tool for collecting information about the underlying pathology of cancerous tissue. Measurements using multiple b-values have indicated biexponential signal attenuation, ascribed to "fast" (high ADC) and "slow" (low ADC) diffusion components. In this empirical study, we investigate the properties of the diffusion time (Δ)-dependent components of the diffusion-weighted (DW) signal in a constant b-value experiment. A xenograft gliobastoma mouse was imaged using Δ = 11 ms, 20 ms, 40 ms, 60 ms, and b = 500-4000 s/mm(2) in intervals of 500 s/mm(2). Data were corrected for EPI distortions, and the Δ-dependence on the DW-signal was measured within three regions of interest [intermediate- and high-density tumor regions and normal-appearing brain (NAB) tissue regions]. In this study, we verify the assumption that the slow decaying component of the DW-signal is non-Gaussian and dependent on Δ, consistent with restricted diffusion of the intracellular space. As the DW-signal is a function of Δ and is specific to restricted diffusion, manipulating Δ at constant b-value (cb) provides a complementary and direct approach for separating the restricted from the hindered diffusion component. We found that Δ-dependence is specific to the tumor tissue signal. Based on an extended biexponential model, we verified the interpretation of the diffusion time-dependent contrast and successfully estimated the intracellular restricted ADC, signal volume fraction, and cell size within each ROI.
扩散加权磁共振成像(DWI)技术能够量化水的流动性,以探究生物组织的微观结构特性,并已成为收集有关癌组织潜在病理学信息的有效工具。使用多个b值进行的测量表明存在双指数信号衰减,这归因于“快速”(高表观扩散系数[ADC])和“缓慢”(低ADC)扩散成分。在这项实证研究中,我们在恒定b值实验中研究了扩散加权(DW)信号的扩散时间(Δ)依赖性成分的特性。使用Δ = 11毫秒、20毫秒、40毫秒、60毫秒,以及b = 500 - 4000 s/mm²(间隔为500 s/mm²)对一只异种移植胶质母细胞瘤小鼠进行成像。对数据进行了回波平面成像(EPI)失真校正,并在三个感兴趣区域[中高密度肿瘤区域和正常脑(NAB)组织区域]内测量了DW信号对Δ的依赖性。在本研究中,我们验证了以下假设:DW信号的缓慢衰减成分是非高斯的且依赖于Δ,这与细胞内空间的受限扩散一致。由于DW信号是Δ的函数且特定于受限扩散,在恒定b值(cb)下操纵Δ为分离受限扩散成分和受阻扩散成分提供了一种互补且直接的方法。我们发现Δ依赖性特定于肿瘤组织信号。基于扩展双指数模型,我们验证了对扩散时间依赖性对比度的解释,并成功估计了每个感兴趣区域内的细胞内受限ADC、信号体积分数和细胞大小。