Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028 Barcelona, Spain.
Sci Adv. 2016 Aug 5;2(8):e1600451. doi: 10.1126/sciadv.1600451. eCollection 2016 Aug.
Socially relevant situations that involve strategic interactions are widespread among animals and humans alike. To study these situations, theoretical and experimental research has adopted a game theoretical perspective, generating valuable insights about human behavior. However, most of the results reported so far have been obtained from a population perspective and considered one specific conflicting situation at a time. This makes it difficult to extract conclusions about the consistency of individuals' behavior when facing different situations and to define a comprehensive classification of the strategies underlying the observed behaviors. We present the results of a lab-in-the-field experiment in which subjects face four different dyadic games, with the aim of establishing general behavioral rules dictating individuals' actions. By analyzing our data with an unsupervised clustering algorithm, we find that all the subjects conform, with a large degree of consistency, to a limited number of behavioral phenotypes (envious, optimist, pessimist, and trustful), with only a small fraction of undefined subjects. We also discuss the possible connections to existing interpretations based on a priori theoretical approaches. Our findings provide a relevant contribution to the experimental and theoretical efforts toward the identification of basic behavioral phenotypes in a wider set of contexts without aprioristic assumptions regarding the rules or strategies behind actions. From this perspective, our work contributes to a fact-based approach to the study of human behavior in strategic situations, which could be applied to simulating societies, policy-making scenario building, and even a variety of business applications.
在动物和人类中,涉及策略互动的社交相关情境都很普遍。为了研究这些情境,理论和实验研究采用了博弈论的视角,为人类行为提供了有价值的见解。然而,到目前为止,大多数报告的结果都是从人口角度得出的,并且一次只考虑一种特定的冲突情境。这使得很难从面对不同情境时个体行为的一致性中得出结论,也很难定义观察到的行为背后的策略的综合分类。我们展示了一项实验室现场实验的结果,该实验让参与者面对四种不同的二元博弈,旨在确定支配个体行为的一般行为规则。通过使用无监督聚类算法分析我们的数据,我们发现所有参与者都非常一致地表现出有限数量的行为表型(嫉妒、乐观、悲观和信任),只有一小部分参与者表现出不确定的行为。我们还讨论了与基于先验理论方法的现有解释之间可能存在的联系。我们的研究结果为在更广泛的情境中识别基本行为表型的实验和理论努力提供了重要贡献,而无需对行为背后的规则或策略进行先验假设。从这个角度来看,我们的工作为在策略情境中研究人类行为提供了一种基于事实的方法,这种方法可以应用于模拟社会、制定政策场景和各种商业应用。