Hau Janice, Sarubbo Silvio, Houde Jean Christophe, Corsini Francesco, Girard Gabriel, Deledalle Charles, Crivello Fabrice, Zago Laure, Mellet Emmanuel, Jobard Gaël, Joliot Marc, Mazoyer Bernard, Tzourio-Mazoyer Nathalie, Descoteaux Maxime, Petit Laurent
Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, PAC Carreire, 146 rue Léo Saignat-CS61292-Case 28, 33076, Bordeaux, France.
Division of Neurosurgery, Department of Neurosciences, "S. Chiara" Hospital, Trento APSS, Trento, Italy.
Brain Struct Funct. 2017 May;222(4):1645-1662. doi: 10.1007/s00429-016-1298-6. Epub 2016 Aug 31.
Despite its significant functional and clinical interest, the anatomy of the uncinate fasciculus (UF) has received little attention. It is known as a 'hook-shaped' fascicle connecting the frontal and anterior temporal lobes and is believed to consist of multiple subcomponents. However, the knowledge of its precise connectional anatomy in humans is lacking, and its subcomponent divisions are unclear. In the present study, we evaluate the anatomy of the UF and provide its detailed normative description in 30 healthy subjects with advanced particle-filtering tractography with anatomical priors and robustness to crossing fibers with constrained spherical deconvolution. We extracted the UF by defining its stem encompassing all streamlines that converge into a compact bundle, which consisted not only of the classic hook-shaped fibers, but also of straight horizontally oriented. We applied an automatic-clustering method to subdivide the UF bundle and revealed five subcomponents in each hemisphere with distinct connectivity profiles, including different asymmetries. A layer-by-layer microdissection of the ventral part of the external and extreme capsules using Klingler's preparation also demonstrated five types of uncinate fibers that, according to their pattern, depth, and cortical terminations, were consistent with the diffusion-based UF subcomponents. The present results shed new light on the UF cortical terminations and its multicomponent internal organization with extended cortical connections within the frontal and temporal cortices. The different lateralization patterns we report within the UF subcomponents reconcile the conflicting asymmetry findings of the literature. Such results clarifying the UF structural anatomy lay the groundwork for more targeted investigations of its functional role, especially in semantic language processing.
尽管钩状束(UF)在功能和临床方面具有重大意义,但其解剖结构却很少受到关注。它是连接额叶和颞叶前部的“钩状”纤维束,被认为由多个子成分组成。然而,目前尚缺乏关于其在人类中精确连接解剖结构的知识,其亚成分划分也不明确。在本研究中,我们对30名健康受试者的钩状束解剖结构进行了评估,并通过具有解剖学先验知识的先进粒子滤波纤维束成像技术以及对交叉纤维具有鲁棒性的约束球形反卷积技术,对其进行了详细的规范性描述。我们通过定义其主干来提取钩状束,该主干包含所有汇聚成紧密束状的流线,其中不仅包括经典的钩状纤维,还包括水平方向的直线纤维。我们应用自动聚类方法对钩状束进行细分,发现在每个半球中有五个具有不同连接模式的子成分,包括不同的不对称性。使用克林格勒(Klingler)标本对外部和极端囊腹侧部分进行逐层显微解剖,也证实了五种类型的钩状纤维,根据其模式、深度和皮质终末,与基于扩散的钩状束子成分一致。本研究结果为钩状束的皮质终末及其多成分内部组织提供了新的见解,其在额叶和颞叶皮质内具有扩展的皮质连接。我们在钩状束子成分中报告的不同偏侧化模式协调了文献中相互矛盾的不对称性研究结果。这些阐明钩状束结构解剖的结果为更有针对性地研究其功能作用奠定了基础,尤其是在语义语言处理方面。