Suppr超能文献

SNAREpin组装过程中的动力学障碍在膜对接/引发及融合的调控中发挥作用。

Kinetic barriers to SNAREpin assembly in the regulation of membrane docking/priming and fusion.

作者信息

Li Feng, Tiwari Neeraj, Rothman James E, Pincet Frederic

机构信息

Department of Cell Biology, School of Medicine, Yale University, New Haven, CT 06520;

Department of Cell Biology, School of Medicine, Yale University, New Haven, CT 06520; Nanobiology Institute, School of Medicine, Yale University, New Haven, CT 06520; Laboratoire de Physique Statistique, Ecole Normale Supérieure, Paris Sciences et Lettres Research University, 75005 Paris, France; Laboratoire de Physique Statistique, Université Paris Diderot Sorbonne Paris Cité, 75005 Paris, France; Laboratoire de Physique Statistique, Sorbonne Universités, Université Pierre et Marie Curie, Univ Paris 06, CNRS, 75005 Paris, France

出版信息

Proc Natl Acad Sci U S A. 2016 Sep 20;113(38):10536-41. doi: 10.1073/pnas.1604000113. Epub 2016 Sep 6.

Abstract

Neurotransmission is achieved by soluble NSF attachment protein receptor (SNARE)-driven fusion of readily releasable vesicles that are docked and primed at the presynaptic plasma membrane. After neurotransmission, the readily releasable pool of vesicles must be refilled in less than 100 ms for subsequent release. Here we show that the initial association of SNARE complexes, SNAREpins, is far too slow to support this rapid refilling owing to an inherently high activation energy barrier. Our data suggest that acceleration of this process, i.e., lowering of the barrier, is physiologically necessary and can be achieved by molecular factors. Furthermore, under zero force, a low second energy barrier transiently traps SNAREpins in a half-zippered state similar to the partial assembly that engages calcium-sensitive regulatory machinery. This result suggests that the barrier must be actively raised in vivo to generate a sufficient pause in the zippering process for the regulators to set in place. We show that the heights of the activation energy barriers can be selectively changed by molecular factors. Thus, it is possible to modify, both in vitro and in vivo, the lifespan of each metastable state. This controllability provides a simple model in which vesicle docking/priming, an intrinsically slow process, can be substantially accelerated. It also explains how the machinery that regulates vesicle fusion can be set in place while SNAREpins are trapped in a half-zippered state.

摘要

神经传递是通过可溶性 NSF 附着蛋白受体(SNARE)驱动的、停靠并预充能于突触前质膜的易释放囊泡的融合来实现的。神经传递后,易释放囊泡池必须在不到 100 毫秒的时间内重新填充,以便后续释放。在这里,我们表明,由于固有的高活化能垒,SNARE 复合体(SNARE 栓)的初始结合速度太慢,无法支持这种快速重新填充。我们的数据表明,加速这一过程,即降低能垒,在生理上是必要的,并且可以通过分子因素来实现。此外,在零力作用下,一个低的二级能垒会短暂地将 SNARE 栓捕获在半拉链状态,类似于与钙敏感调节机制结合的部分组装状态。这一结果表明,在体内必须主动提高能垒,以便在拉链过程中产生足够的停顿,让调节因子发挥作用。我们表明,活化能垒的高度可以通过分子因素选择性地改变。因此,在体外和体内都有可能改变每个亚稳态的寿命。这种可控性提供了一个简单的模型,其中囊泡停靠/预充能这一本质上缓慢的过程可以被大幅加速。它还解释了在 SNARE 栓被困在半拉链状态时,调节囊泡融合的机制是如何发挥作用的。

相似文献

引用本文的文献

2
Intermediate steps in the formation of neuronal SNARE complexes.神经元 SNARE 复合物形成的中间步骤。
J Biol Chem. 2024 Aug;300(8):107591. doi: 10.1016/j.jbc.2024.107591. Epub 2024 Jul 19.
5
SNARE Proteins in Synaptic Vesicle Fusion.突触小泡融合中的 SNARE 蛋白。
Adv Neurobiol. 2023;33:63-118. doi: 10.1007/978-3-031-34229-5_4.
6
Energetics, kinetics, and pathways of SNARE assembly in membrane fusion.SNARE 组装在膜融合中的能量学、动力学和途径。
Crit Rev Biochem Mol Biol. 2022 Aug;57(4):443-460. doi: 10.1080/10409238.2022.2121804. Epub 2022 Sep 24.

本文引用的文献

5
Calcium sensitive ring-like oligomers formed by synaptotagmin.由突触结合蛋白形成的钙敏感环状寡聚体。
Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):13966-71. doi: 10.1073/pnas.1415849111. Epub 2014 Sep 8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验