Purushotham Pallinti, Cho Sung Hyun, Díaz-Moreno Sara M, Kumar Manish, Nixon B Tracy, Bulone Vincent, Zimmer Jochen
Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908.
Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802.
Proc Natl Acad Sci U S A. 2016 Oct 4;113(40):11360-11365. doi: 10.1073/pnas.1606210113. Epub 2016 Sep 19.
Plant cell walls are a composite material of polysaccharides, proteins, and other noncarbohydrate polymers. In the majority of plant tissues, the most abundant polysaccharide is cellulose, a linear polymer of glucose molecules. As the load-bearing component of the cell wall, individual cellulose chains are frequently bundled into micro and macrofibrils and are wrapped around the cell. Cellulose is synthesized by membrane-integrated and processive glycosyltransferases that polymerize UDP-activated glucose and secrete the nascent polymer through a channel formed by their own transmembrane regions. Plants express several different cellulose synthase isoforms during primary and secondary cell wall formation; however, so far, none has been functionally reconstituted in vitro for detailed biochemical analyses. Here we report the heterologous expression, purification, and functional reconstitution of Populus tremula x tremuloides CesA8 (PttCesA8), implicated in secondary cell wall formation. The recombinant enzyme polymerizes UDP-activated glucose to cellulose, as determined by enzyme degradation, permethylation glycosyl linkage analysis, electron microscopy, and mutagenesis studies. Catalytic activity is dependent on the presence of a lipid bilayer environment and divalent manganese cations. Further, electron microscopy analyses reveal that PttCesA8 produces cellulose fibers several micrometers long that occasionally are capped by globular particles, likely representing PttCesA8 complexes. Deletion of the enzyme's N-terminal RING-finger domain almost completely abolishes fiber formation but not cellulose biosynthetic activity. Our results demonstrate that reconstituted PttCesA8 is not only sufficient for cellulose biosynthesis in vitro but also suffices to bundle individual glucan chains into cellulose microfibrils.
植物细胞壁是多糖、蛋白质和其他非碳水化合物聚合物的复合材料。在大多数植物组织中,最丰富的多糖是纤维素,它是葡萄糖分子的线性聚合物。作为细胞壁的承重成分,单个纤维素链经常被捆绑成微纤丝和大纤丝,并包裹在细胞周围。纤维素由膜整合且具有连续性的糖基转移酶合成,这些酶将UDP激活的葡萄糖聚合,并通过自身跨膜区域形成的通道分泌新生聚合物。植物在初生和次生细胞壁形成过程中表达几种不同的纤维素合酶同工型;然而,到目前为止,还没有一种在体外进行功能重建以进行详细的生化分析。在这里,我们报告了参与次生细胞壁形成的毛果杨CesA8(PttCesA8)的异源表达、纯化和功能重建。通过酶降解、全甲基化糖基连接分析、电子显微镜和诱变研究确定,重组酶将UDP激活的葡萄糖聚合成纤维素。催化活性依赖于脂质双层环境和二价锰阳离子的存在。此外,电子显微镜分析表明,PttCesA8产生的纤维素纤维长达数微米,偶尔被球状颗粒封顶,这些颗粒可能代表PttCesA8复合物。删除该酶的N端环指结构域几乎完全消除了纤维形成,但没有消除纤维素生物合成活性。我们的结果表明,重组的PttCesA8不仅足以在体外进行纤维素生物合成,而且足以将单个葡聚糖链捆绑成纤维素微纤丝。