Cahn Jackson K B, Werlang Caroline A, Baumschlager Armin, Brinkmann-Chen Sabine, Mayo Stephen L, Arnold Frances H
Division of Chemistry and Chemical Engineering, and ‡Division of Biology and Biological Engineering, California Institute of Technology , Pasadena, California 91125, United States.
ACS Synth Biol. 2017 Feb 17;6(2):326-333. doi: 10.1021/acssynbio.6b00188. Epub 2016 Oct 5.
The ability to control enzymatic nicotinamide cofactor utilization is critical for engineering efficient metabolic pathways. However, the complex interactions that determine cofactor-binding preference render this engineering particularly challenging. Physics-based models have been insufficiently accurate and blind directed evolution methods too inefficient to be widely adopted. Building on a comprehensive survey of previous studies and our own prior engineering successes, we present a structure-guided, semirational strategy for reversing enzymatic nicotinamide cofactor specificity. This heuristic-based approach leverages the diversity and sensitivity of catalytically productive cofactor binding geometries to limit the problem to an experimentally tractable scale. We demonstrate the efficacy of this strategy by inverting the cofactor specificity of four structurally diverse NADP-dependent enzymes: glyoxylate reductase, cinnamyl alcohol dehydrogenase, xylose reductase, and iron-containing alcohol dehydrogenase. The analytical components of this approach have been fully automated and are available in the form of an easy-to-use web tool: Cofactor Specificity Reversal-Structural Analysis and Library Design (CSR-SALAD).
控制酶促烟酰胺辅因子利用的能力对于构建高效代谢途径至关重要。然而,决定辅因子结合偏好的复杂相互作用使得这种构建极具挑战性。基于物理的模型不够准确,而盲目定向进化方法效率又太低,无法被广泛采用。基于对先前研究的全面调查以及我们自己之前的构建成功经验,我们提出了一种结构导向的半理性策略来逆转酶促烟酰胺辅因子特异性。这种基于启发式的方法利用催化活性辅因子结合几何结构的多样性和敏感性,将问题限制在实验可处理的规模。我们通过逆转四种结构不同的依赖NADP的酶(乙醛酸还原酶、肉桂醇脱氢酶、木糖还原酶和含铁醇脱氢酶)的辅因子特异性,证明了该策略的有效性。这种方法的分析组件已完全自动化,并以易于使用的网络工具形式提供:辅因子特异性逆转 - 结构分析和文库设计(CSR - SALAD)。