Suppr超能文献

生长速率在稳态和非稳态下控制mRNA周转。

Growth rate controls mRNA turnover in steady and non-steady states.

作者信息

García-Martínez José, Troulé Kevin, Chávez Sebastián, Pérez-Ortín José E

机构信息

a Departamento de Genética and E.R.I. Biotecmed , Universitat de València , Burjassot , Spain.

b Departamento de Bioquımica y Biologia Molecular and E.R.I. Biotecmed, Universitat de València , Burjassot , Spain.

出版信息

RNA Biol. 2016 Dec;13(12):1175-1181. doi: 10.1080/15476286.2016.1236171. Epub 2016 Sep 20.

Abstract

Gene expression has been investigated in relation with growth rate in the yeast Saccharomyces cerevisiae, following different experimental strategies. The expression of some specific gene functional categories increases or decreases with growth rate. Our recently published results have unveiled that these changes in mRNA concentration with growth depend on the relative alteration of mRNA synthesis and decay, and that, in addition to this gene-specific transcriptomic signature of growth, global mRNA turnover increases with growth rate. We discuss here these results in relation with other previous and concurrent publications, and we add new evidence which indicates that growth rate controls mRNA turnover even under non-steady-state conditions.

摘要

人们采用不同的实验策略,研究了酿酒酵母中基因表达与生长速率的关系。某些特定基因功能类别的表达会随着生长速率的增加或减少。我们最近发表的结果表明,mRNA浓度随生长的这些变化取决于mRNA合成和降解的相对变化,并且,除了这种生长的基因特异性转录组特征外,整体mRNA周转率也随生长速率增加。我们在此结合之前和同期的其他出版物讨论这些结果,并补充新的证据,表明即使在非稳态条件下,生长速率也能控制mRNA周转率。

相似文献

1
Growth rate controls mRNA turnover in steady and non-steady states.
RNA Biol. 2016 Dec;13(12):1175-1181. doi: 10.1080/15476286.2016.1236171. Epub 2016 Sep 20.
2
Imaging single mRNAs to study dynamics of mRNA export in the yeast Saccharomyces cerevisiae.
Methods. 2016 Apr 1;98:104-114. doi: 10.1016/j.ymeth.2016.01.006. Epub 2016 Jan 16.
3
The transcriptional inhibitor thiolutin blocks mRNA degradation in yeast.
Yeast. 2008 Feb;25(2):85-92. doi: 10.1002/yea.1548.
4
Method for measuring mRNA decay rate in Saccharomyces cerevisiae.
Methods Enzymol. 2013;530:137-55. doi: 10.1016/B978-0-12-420037-1.00007-5.
5
There is a steady-state transcriptome in exponentially growing yeast cells.
Yeast. 2010 Jul;27(7):413-22. doi: 10.1002/yea.1768.
8
9
Dynamic profiling of mRNA turnover reveals gene-specific and system-wide regulation of mRNA decay.
Mol Biol Cell. 2011 Aug 1;22(15):2787-95. doi: 10.1091/mbc.E11-01-0028. Epub 2011 Jun 16.
10
Genomics of mRNA turnover.
Brief Funct Genomic Proteomic. 2007 Dec;6(4):282-91. doi: 10.1093/bfgp/elm029. Epub 2008 Jan 22.

引用本文的文献

2
Decoupled transcript and protein concentrations ensure histone homeostasis in different nutrients.
EMBO J. 2024 Nov;43(21):5141-5168. doi: 10.1038/s44318-024-00227-w. Epub 2024 Sep 13.
3
Biochemical Evaluation of and Strains in Batch Cultures for Production Optimization of Valuable Metabolites.
Microorganisms. 2022 May 3;10(5):964. doi: 10.3390/microorganisms10050964.
6
The mRNA degradation factor Xrn1 regulates transcription elongation in parallel to Ccr4.
Nucleic Acids Res. 2019 Oct 10;47(18):9524-9541. doi: 10.1093/nar/gkz660.
7
A role for Mog1 in H2Bub1 and H3K4me3 regulation affecting RNAPII transcription and mRNA export.
EMBO Rep. 2018 Nov;19(11). doi: 10.15252/embr.201845992. Epub 2018 Sep 24.
8
Systematic identification of factors mediating accelerated mRNA degradation in response to changes in environmental nitrogen.
PLoS Genet. 2018 May 21;14(5):e1007406. doi: 10.1371/journal.pgen.1007406. eCollection 2018 May.
9
Promoter architecture determines cotranslational regulation of mRNA.
Genome Res. 2018 Apr;28(4):509-518. doi: 10.1101/gr.230458.117. Epub 2018 Mar 22.
10
Asymmetric cell division requires specific mechanisms for adjusting global transcription.
Nucleic Acids Res. 2017 Dec 1;45(21):12401-12412. doi: 10.1093/nar/gkx974.

本文引用的文献

1
Translational Capacity of a Cell Is Determined during Transcription Elongation via the Ccr4-Not Complex.
Cell Rep. 2016 May 24;15(8):1782-94. doi: 10.1016/j.celrep.2016.04.055. Epub 2016 May 12.
2
The importance of controlling mRNA turnover during cell proliferation.
Curr Genet. 2016 Nov;62(4):701-710. doi: 10.1007/s00294-016-0594-2. Epub 2016 Mar 23.
5
On the Origin of Heterotrophy.
Trends Microbiol. 2016 Jan;24(1):12-25. doi: 10.1016/j.tim.2015.10.003. Epub 2015 Nov 12.
6
Differential Stoichiometry among Core Ribosomal Proteins.
Cell Rep. 2015 Nov 3;13(5):865-73. doi: 10.1016/j.celrep.2015.09.056. Epub 2015 Oct 22.
7
Impact of high pH stress on yeast gene expression: A comprehensive analysis of mRNA turnover during stress responses.
Biochim Biophys Acta. 2015 Jun;1849(6):653-64. doi: 10.1016/j.bbagrm.2015.04.001. Epub 2015 Apr 18.
8
A study on the fundamental mechanism and the evolutionary driving forces behind aerobic fermentation in yeast.
PLoS One. 2015 Jan 24;10(1):e0116942. doi: 10.1371/journal.pone.0116942. eCollection 2015.
9
Cell cycle population effects in perturbation studies.
Mol Syst Biol. 2014 Jun 21;10(6):732. doi: 10.15252/msb.20145172.
10
Constant growth rate can be supported by decreasing energy flux and increasing aerobic glycolysis.
Cell Rep. 2014 May 8;7(3):705-14. doi: 10.1016/j.celrep.2014.03.057. Epub 2014 Apr 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验