Department of Cellular Biophysics, Max Planck Institute for Medical Research, Heidelberg, and Laboratory of Biophysical Chemistry, University of Heidelberg , Jahnstraße 29, 69120 Heidelberg, Germany.
University of Applied Sciences Jena , Carl Zeiss Promenade 2, 07745 Jena, Germany.
Nano Lett. 2016 Oct 12;16(10):6610-6616. doi: 10.1021/acs.nanolett.6b03308. Epub 2016 Sep 30.
So far, all previous attempts to apply nanostructures for perfect transmission have not achieved maximum transmittance beyond 99.5% due to the limited regularity of the nanoscale surface geometry: too low for many high-end applications. Here we demonstrate a nanostructured stealth surface, with minimal reflectance (<0.02%) and maximal transmittance (>99.8%) for a wavelength range, covering visible and near-infrared. Compared to multilayer thin film coatings for near-infrared applications our antireflective surfaces operate within a much broader wavelength range, are mechanical stable to resist human touch or contamination, show a 44% higher laser-induced damage threshold, and are suitable for bended interfaces such as microlenses as well.
迄今为止,由于纳米尺度表面几何形状的限制,以往所有试图应用纳米结构实现完美透射的尝试都未能实现超过 99.5%的最大透射率:对于许多高端应用来说,这个数值太低了。在这里,我们展示了一种具有最小反射率(<0.02%)和最大透射率(>99.8%)的纳米结构隐形表面,该表面覆盖了可见和近红外波长范围。与用于近红外应用的多层薄膜涂层相比,我们的抗反射表面在更宽的波长范围内工作,机械稳定,能够抵抗人体触摸或污染,具有 44%更高的激光诱导损伤阈值,并且适用于微透镜等弯曲界面。